已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heart Failure Prediction Models using Big Data Techniques

计算机科学 SPARK(编程语言) 大数据 数据挖掘 预测建模 数据科学 分析 机器学习 程序设计语言
作者
Heba F. Rammal,Zahoor Ahmed
出处
期刊:International Journal of Advanced Computer Science and Applications [The Science and Information Organization]
卷期号:9 (5) 被引量:2
标识
DOI:10.14569/ijacsa.2018.090547
摘要

Big Data technologies have a great potential in transforming healthcare, as they have revolutionized other industries. In addition to reducing the cost, they could save millions of lives and improve patient outcomes. Heart Failure (HF) is the leading death cause disease, both nationally and internally. The Social and individual burden of this disease can be reduced by its early detection. However, the signs and symptoms of HF in the early stages are not clear, so it is relatively difficult to prevent or predict it. The main objective of this research is to propose a model to predict patients with HF using a multi-structure dataset integrated from various resources. The underpinning of our proposed model relies on studying the current analytical techniques that support heart failure prediction, and then build an integrated model based on Big Data technologies using WEKA analytics tool. To achieve this, we extracted different important factors of heart failure from King Saud Medical City (KSUMC) system, Saudi Arabia, which are available in structured, semi-structured and unstructured format. Unfortunately, a lot of information is buried in unstructured data format. We applied some pre-processing techniques to enhance the parameters and integrate different data sources in Hadoop Distributed File System (HDFS) using distributed-WEKA-spark package. Then, we applied data-mining algorithms to discover patterns in the dataset to predict heart risks and causes. Finally, the analyzed report is stored and distributed to get the insight needed from the prediction. Our proposed model achieved an accuracy and Area under the Curve (AUC) of 93.75% and 94.3%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangll发布了新的文献求助10
1秒前
1秒前
斯文明杰发布了新的文献求助10
2秒前
DrChan完成签到,获得积分10
2秒前
快乐滑板应助迷途采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
花花发布了新的文献求助10
5秒前
苏满天发布了新的文献求助10
5秒前
6秒前
中央发布了新的文献求助10
7秒前
桐桐应助Membranes采纳,获得10
8秒前
研友_8Kedgn发布了新的文献求助10
9秒前
yinan发布了新的文献求助10
9秒前
Eva发布了新的文献求助10
11秒前
sy发布了新的文献求助10
11秒前
哇咔咔发布了新的文献求助10
11秒前
yydsyyd完成签到 ,获得积分10
12秒前
13秒前
14秒前
xjcy应助科研通管家采纳,获得20
14秒前
8R60d8应助科研通管家采纳,获得10
14秒前
niwei完成签到,获得积分20
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
14秒前
慕青应助科研通管家采纳,获得10
14秒前
明亮灭绝完成签到,获得积分10
15秒前
英俊的铭应助苏满天采纳,获得10
17秒前
Mercury发布了新的文献求助10
17秒前
17秒前
CodeCraft应助Eva采纳,获得10
18秒前
niwei发布了新的文献求助10
18秒前
19秒前
语音助手发布了新的文献求助10
19秒前
liran完成签到,获得积分10
20秒前
sy完成签到,获得积分10
21秒前
搞怪山晴发布了新的文献求助10
24秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503