亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of biochar on soil structure - review

生物炭 环境科学 农林复合经营 农学 土壤科学 化学 热解 生物 有机化学
作者
Martin Juriga,Vladimí­r Šimanský
出处
期刊:Acta Fytotechnica et Zootechnica 卷期号:21 (1): 11-19 被引量:32
标识
DOI:10.15414/afz.2018.21.01.11-19
摘要

Received: 2018-02-08   |   Accepted: 2018-02-21   |   Available online: 2018-03-31 https://doi.org/10.15414/afz.2018.21.01.11-19 Soil structure and organic matter are important indicators of soil quality. In the literature it states that there is a linear relation between soil structure and the organic matter. Mechanisms of formation and stabilization of aggregates have also been described in the literature, but it is evident that not every mechanism is applicable to various soil-climatic conditions. Recently, the modern but not the new term has become a biochar. It is anticipated that biochar is a significant source of C, and its application to the soil will improve the aggregation process in the soil. Lately we have been working in this area and we wanted to provide an overview of this issue through this review. The aim of this review was to collate and synthesize available information on soil structure and SOM. The emphasis of this review is on biochar and its combination with other organic and mineral fertilizers in relation to soil structure. Keywords: biochar, soil organic matter, aggregation, aggregate stability References ABEL, S. et al. (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. In Geoderma., vol. 202–203, pp. 183–191. DOI: https://doi. org/10.1016/j.geoderma.2013.03.003 ABROL, V. et al. (2016) Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment. In Journal of Soil and Sediments, vol. 16, pp. 2709– 2719. DOI: https://doi.org/10.1007/s11368-016-1448-8 AGEGNEHU, G. et al. (2016) Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emission in a tropical agricultural soil. In Science on The Total Environment, vol. 543, pp. 295–306. DOI: https://doi. org/10.1016/j.scitoenv.2015.11.054 AHMAD, M. et al. (2014) Biochar as a sorbent for contaminant management in soil and water: A review. In Chemosphere, vol. 99, pp. 19–33. DOI: https://doi.org/j.chemosphere.2013.10.071 AJAYI, A. E. and HORN, R. (2016) Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. In Soil and Tillage Research, vol. 164, pp. 34–44. DOI: https://doi. org/10.1016/j.still.2016.01.011 ANNABI, M et al. (2007) Soil aggregate stability improvement with urban compost of different maturities. In American Society of Agronomy, vol. 71, pp. 413–423. DOI: https://doi.org/10.2136/ sssaj2006.0161 ASAI, H. et al. (2009) Biochar amendment techniques for umpand rice production in Northern Leos: 1. Soil physical properties, leaf SPAD and grain yield. In Field Crop Research, vol. 111., pp. 81–84. DOI: https://doi.org/10.1016/j.for.2008.10.008 BALL, B. C. and MUKHOLM, L. J. (2015) Visual soil evaluation: Releasing potential crop production with minimum environmental impact. In USA: CABI, Walingford, 2015. 172 p. ISBN 978780644707 BIEDERMAN, L. A. and HARPOLE, W. S. (2013) Biochar and its effect on plant productivity and nutrient cycling: A Metaanalysis. In Bioenergy, vol. 5, pp. 202–214. DOI: https://dx.doi. org/10.1111/gcbb.12037 BOIX-FAYOS, C. et al. (2001) Influence soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. In Catena, vol. 44, pp. 47–67. DOI: https://doi.org/10.1016/ S0341-8162(00)00176-4 BRODOWSKI, S. et al. (2006) Aggregate – occluded black carbon in soil. In European Journal of Soil Science, vol. 57, pp. 539– 546. DOI: https://doi.org/10.1111/j.1365-2389.2006.00807.x BRONICK, C. J. and LAL, R. (2005) Soil structure and management: a review. In Geoderma., vol. 124, pp. 3–22. DOI: https://doi.org/10,1016/j. geoderma.2004.03.005 BUTMAN, D. E. et al. (2015) Increased mobilization of aged carbon to rivers by human disturbance. In Nature Geoscience, vol. 8, pp. 112–116. DOI: https://doi.org/10.1038/hgeo2322 CONTE, P. (2014) Biochar, soil fertility, and environment. In Biology and Fertility of Soils, vol. 50, pp. 1175–1175. DOI: https://doi.org/10.1007/S00374 CORNELISSEN, G. et al. (2013) Biochar effect on maize yeld and soil characteristics in five conservation farming sites in Zambia. In Agronomy, vol. 3, pp. 256–274. DOI: https://doi. org/10.3390/agronomy3020256 DEAL, CH. et al. (2012) Comparison of klin-derived and gasiefier-derived biochars as soil amendmets in the humid tropics. In Biomass and Bioenergy, vol. 37, pp. 161–168. DOI: https://doi.org/10.1016/j biombie. 2011.12.017 DEXTER, A. R. (1988) Advances in characterization of soil structure. In Soil and Tillage Research, vol. 11, pp. 199–238. DOI: https://doi.org/10.1016/0167-1987(88)90002-5 EDWARDS, A. P. and BREMNER, J. M. (1967) Microaggregates in soils. In European Journal of Soil Science, vol. 18, pp. 64–73. EVANGELOU, M. et al. (2014) Soil application of biochar produced from biomass grown on trace element contamined land. In Journal of Environmental Management, vol. 146, pp. 100–106. DOI: https://doi.org/10.1016/j.envman.2014.07.046 FENG, X. (2005) Chemical and mineralogical control on humic acid sorption to clay mineral surfaces. In Organic Geochemistry, vol. 36, pp. 1553–1566. DOI: https://doi. org/10.1016/org.geochem.2005.06.006 FISCHER, D. and GLASER, B. (2012) Synergisms between compost and biochar for sustainable. In KUMAR, Š. Managment of organic waste. In Tech China, 198 p. ISBN 978-953-307-925-7. GOLCHIN, A. et al. (1997) The effects of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by 13CNMR spectroscopy. I. Whole soil and humic acid fraction. In Geoderma, vol. 76, pp. 155–174. DOI: https://doi.org/10.1016/S0016-7061(96)00104-8 GREEN REPORT (2014). Green Report for 2013. Bratislava: Národné poľnohospodárske a potravinárke centrum, 2014. 65 s. ISBN 978.80-8058-597-6. GROSBELLET, G. et al. (2011) Improvement of soil structure formation by degradation of coarse organic matter. In Geoderma, vol. 162, pp. 27–38. DOI: https://doi.org/10.1016/j. geoderma.2011.01.003 GROSSMAN, J. M. et al. (2010) Amazonian anthrosols support similar microbial communities that differ distinetly from those extant in adjucent, unmodifield soils of the same mineralogy. In Microbial Ecology, vol. 60, pp. 192–205. DOI: https://doi.org/10.1007/S00248-010-989-3 GUILLOU, C et al. (2012) Linking microbial community to soil water-stable aggregation during crop residue decomposition. In Soil Biolog and Biochemistry, vol. 50, pp. 120–133. DOI: https:// doi.org/10.1016/j.soil/bio.2012.03.009 HANSEN, V. et al. (2017) The effects of straw or strawderived gasification biochar applications on soil quality and crop productivity. A farm case study. In Journal of Environmental Management, vol. 186, pp. 88–95. DOI: https://doi.org/10.1016/j. jenvman.2016.10.041 HAYNES, R. J. and NAIDU, R. (1998) Influence of lime, fertilizer and applications on soil organic matter content and soil physical condition: a review. In Nutrient Cycling in Agroecosystems, vol. 51, pp. 123–137. HEARTH, H. M. S. K. et al. (2013) Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and Andisol. In Geoderma, vol. 209–210, pp. 188–197. DOI: https:// doi.org/10.1016/j.geoderma. 2013.06.016 H ELFRICH, M. et al. (2008) Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitationig of litter carbon and nitrogen. In Soil Biology and Biochemistry, vol. 40, pp. 1823–1834. DOI: https://doi. org/10.1016/j.soilbio.2008.03.006 HORÁK, J. (2015) Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian Lowland. In Acta Horticulturae et Regiotecturae, vol. 18, pp. 20 – 24. DOI: https://doi.org/10.1515/ahr-2015-0005 HORÁK, J. and ŠIMANSKÝ, V. (2016) Effect of biochar and biochar combined with N-fertilizer on soil organic content. In Agriculture, vol. 62, pp. 155–158. DOI: https://doi.org/10.1515/ agri-2016-0016 HORÁK, J. and ŠIMANSKÝ, V. (2017) Effect of biochar on soil CO2 production. In Acta fytochenica et zootechnica, vol. 20, pp. 72–77. HORÁK, J. et al. (2017) Biochar and biochar with N fertilizer affect soil N2O emission in Halpic Luvisol . In Biologia, vol. 72, pp. 995–1001. DOI: https://doi.org/10.1515/biolog-2017-0109 HU, F. et al. (2015) Particles infiltration forces and their effects on soil aggregates breakdown. In Soil and Tillage Research, vol. 147, pp. 1–9. DOI: https://doi.org/10.1016/j.still.014.11.006 HUANG, B. et al. (2007) Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. In Geoderma, vol. 139, pp. 336–345. DOI: https://doi.org/j.geoderma.2007.02.012 HUSSIAN, M. et al. (2016) Biochar for crop production: potential benefits and risks. In Journal of Soils and Sediments, vol. 17, pp. 685–716. DOI: https://doi.org/10,1007/ s11368-016-1360-2 CHAN, K. Y. et al. (2007) Agronomic values of green waste biochar as a soil amendment. In Australian Journal of Soil Research, vol. 45, pp. 629–634. CHAN, K. Y. et al. (2008) Using poultry litter biochars as soil amendments . In Australian Journal of Soil Research, vol. 46, pp. 437–444. DOI: https//doi.org/10.1016/10.1071/SK08036 CHENU, C. and COSENTINO, D. (2011) Microbial regulation of soil structural Dynamics. In RITZ, K. and YOUNG, I. The architecture and biology of soils: Life in innorspace. In CABI, Waling ford, Oxfordshire 0X108DE, UK, 2011, 244 p. ISBN-978-1-84593-531-0. INYANG, M. I. et al. (2016) A review of biochar as a low – cost absorbent for aqueous heavy metals removal. In Environmental Science and Technology, vol. 46, pp. 406–433. DOI: https://doi. org/10.1080/10643389. 2015.109880 JANKOWSKI, M. (2013) Gleby ochrowe. Pozycja w krajobrazie, właściwości, geneza i miejsce w systematice. Wydawnictwo naukowe universytetu Mikołaja Kopernika, 2013. 128 p. ISBN 978-83-231-3033-8. JIEN, S. H. and WANG, CH. S. (2013) Effects of biochar on soil properties and erosial potencial in a higly weathered soil. In Catena, vol. 110, pp. 225–233. DOI: https://doi.org/10,1016/j. catena.2013.06.021 JOSEPH, S. et al. (2013) Shifting paradingms: development of high – efficiency biochar fertilizers based on nano-structures and soluble components. In Carbon Management, vol. 4, pp. 323–343. DOI: https://doi.org/ 10.4155/emt.13.23 JOZEFACIUK, G. and CZACHOR, H. (2014) Impact of organic matter, iron oxides, aluminia, silica and drying on mechanical and water stability of artificial soil aggregates. Assesment of new method to study water stability. In Geoderma, vol. 221–222, pp. 1–10. DOI: https://doi.org/10.1016/j.geoderma.2014.01.020 KARAMI, N. et al. (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. In Journal of Hazardous Material, vol. 191, pp. 41–48. DOI: https://doi.org/10.1016/j. jhazmat.2011.04.025 KAY, B. and ANGERS, A. (2001) Soil structure. In SUMNER, M. E. Handbook of Soil Science. In CRP Press Boca Raton, Florida, FL, USA, 2001. 400p. ISBN 9781420041651 KEILUWEIT, M. et al. (2010) Dynamic molecular structure of plant biomass-dirived black carbon (biochar). In Environ. Csi. Technol., vol. 44, pp. 1247–1253. DOI: https://doi.org/10.1021/ e69031419 KHORAMDEL, S. et al. (2013) Evaluation of carbon sequestration potential in corn field with different management systems. In Soil and Tillage Research, vol. 133, pp. 25–31. DOI: https://doi.org/10.1016/j.still. 2013.04.008 KOOKANA, R. S. et al. (2011) Chaper three – Biochar application to soil: Agronomic and environmental benefits and unitended consequences. In Agronomy, vol. 112, pp. 103–143. DOI: https://doi.org/10.1016/B978-0-12-385538-1-00003-2 LAGHARI, M, et al. (2015) Effects of biochar application rate on sandy desert soil properties and sorghum growth. In Catena, vol. 135, pp. 313, 320. DOI: https://doi.org/10.1016/j. catena.2015.08.013 LAIRD, D. et al. (2010) Biochar impact on nutrient leachting from a Midwestern agricultural soil. In Geoderma, vol. 158, pp. 436–442. DOI: https://doi.org/10.1016/j.geoderma.2010.05.012 LEHMANN, J. and JOSEPH, S. (2009) Biochar for environmental management. Science, technology and implementation. New York: Routledge, 2 Park Square, Milton Park, Abirgdon, 2009. 907 p. ISBN 978-1-84407-658-1. LEHMANN, J. et al. (2011) Biochar effects on soil biota – A review. In Soil Biology and Biochemistry, vol. 43, pp. 1812– 1836. DOI: https://doi.org/10.1016/j.soilbio.2011.04.022 LI, G. and FAN, H. (2014) Effect of freze-thaw on water stability of aggregates in a black soil of northest China. In Pedosphere, vol. 24, pp. 285–290. DOI: https://doi.org/10.1016/ S1002-0160(14)60015-1 LI, Y. et al. (2012) In situ preparation of biochar coated silica material from rice husk. In Colloids and Surfaces, vol. 395, pp. 157–160. DOI: https://doi.org/10.1016/j.colsurfa.2011.12.023 LIMA, I. and MARSHALL, W. (2005) Utilization of tenkey manure as granular activated carbon: Physical, chemical and adsorptive properties. In Waste Management, vol. 25, pp. 726– 732. DOI: https://doi.org/10.1016/j.wasman.2004.12.019 LIN, Y. et al. (2012) Water extractable organic carbon is untreated and chemical treated biochars. In Chemosphere, vol. 17, pp. 151–157. DOI: https://doi.org/10.1016/j. chemosphere.2011.12.007 LIU, Y. et al. (2011) Reducing CH4 and CO2 emission from water logged paddy soil with biochar. In Journal of Soils and Sediments, vol. 11, pp. 930–939. DOI: https://doi.org/10.1007/ s11368-011-0376-x LIU, Z. et al. (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. In Plos one, vol. 12. DOI: https://doi.org/10.1371/journal.pone.0179079 MA, N. et al. (2015) Biochar improves soil aggregate stability and water availability in a Mollisol after three years of field application. In Pedoshere, vol. 25, pp. 713–719. DOI: https://doi. org/10.1016/S1002-0160(15) 30052-7 MUKHERJEE, A. and LAL, R. (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. In Agronomy, vol. 3, pp. 313–339. DOI: https://doi.10.3390/agronomy3020313 MUKHERJEE, A. et al. (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. In Science of The Total Environment, vol. 487, pp. 26–36. DOI: https://doi.org/10.1016/j. scitotenv.2014.03.141 MUKHOLM, L. J. et al. (2002) Tensile strength of soil cores in relation to aggregation strength, soil fragmentation and pore characteristic. In Soil and Tillage Research, vol. 64, pp. 125–135. DOI: https://doi.org/10.1016/S0167-1987(01)00250-1 MUKOME, F. N. D. et al. (2013) The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emission from a fertile soil. In Geoderma, vol. 200–201, pp. 90– 98. DOI: https://doi.org/10.1016/j.geoderma.2013.02.004 NEIRA, J. et al. (2015) Oxygen diffusion in soils: Understanding the factors and process needed for modeling. In Journal of Agricultural Research, vol. 75. DOI: https://dx.doi. org/10.4067/S0718-583920150003000005 NORTHON, J. B. et al. (2012) Loss and recovery of soil organic carbon and nitrogen in a semiarid agroecosystem. In Soil Sci. Soc. Am. J., vol. 76, pp. 505–514. DOI: https://doi.org/10.213/ sssaj.2011.0284 NOVAK, J. M. et al. (2012) Biochar impact on soil-moisture storage in an Ultisol nad two Aridisols. In Soil Science, vol. 177, pp. 310–320. DOI: https://doi.org/10.1097/SS.0b013e31824e5593 OADES, J. M. and WATERS, A. G. (1991) Aggregate hierarchy in soil. In Australian Journal of Soil Research, vol. 29, pp. 815–828. DOI: https://doi.org/10.1071/SR9910815 OBIA, A. et al. (2016) In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. In Soil and Tillage Research, vol. 155, pp. 35–44. DOI: https://doi. org/10.1016/j.still.2015.08.002 OLESZCZUK, P. et al. (2014) Microbial, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. In Geoderma, vol. 213, pp. 502–511. DOI: https://doi. org/10.1016/j.geoderma.2013.08.027 ORAM, N, J. et al. (2014) Soil amendment witch biochar increases the competetive ability of legumes via increased potassium availability. In Agriculture, Ecosystems and Environment, vol. 191, pp. 92–98. DOI: https://doi.org/10.1016/j. agee.2014.03.031 PARADELO, R. et al. (2013) Water-dispersible clay in bare fallow soil after 80 years of continuos fertilizer addition. In Geoderma, vol. 200–201, pp. 40–44. DOI: https://doi. org/10.1016/j.geoderma.2013.01.014 PICCOLO, A. and MBAGWO, J. S. C. (1999) Role of hydrophobic components of soil organic matter in soil aggregate stability. In American Society of Agronomy, vol. 63, pp. 1801–1810. DOI: https://doi. org/10.2136/sssaj/1999. 9361801x PIETIKAINEN, J. et al. (2000) Does short-term heating of forest humus change its properties os a substrate for microbes?  In Soil Biology and Biochemistry, vol. 32, pp. 277–288. DOI: https://doi.org/10.1016/S0038-0717(99)00164-9 POLLÁKOVÁ, N. et al. (2017) The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soil of selected Slovak and Czech hilly lands. In Journal of Soil Sediments, vol. 13, pp. 1–11. DOI: https://doi.org/10.1007/ s11368-017-1842-x PROVENZANO, M. R. et al. (2014) Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. In Waste Management, vol. 34, pp. 653–660. DOI: https://doi. org/10.1016/j.wasman.2013.12.001 RAHMAN, M. T. et al. (2017) The roles of organic amendments and microbial community in the improvement of soil structure of a Vertisol. In Applied Soil Ecology, vol. 111, pp. 84–93. DOI: https://doi.org/10.1016/j.apsoil.2016.11.018 RAJKOVICH, S. et al. (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperature soil. In Biology and Fertility of Soil, vol. 48, pp. 271–284. DOI: https://doi.org/10.1007/S00374-011-0624-7 SANTOS, D. et al. (1997) Uniform separatis of concentric surface layers from soil aggregates. In Soil Science of America Journal Abstract, vol. 61, pp. 720–724. STEFANIUK, M. and OLESTCZUK, P. (2015) Characterization of biochars produced from residues from biogas production. In Journal of Analytical and Applied Pyrolysis, vol. 115, pp. 157– 165. DOI: https://doi.org/10.1016/j.jaap.2015.07.011 SZOMBATOVÁ, N. (1999) Comparison of soil carbon surceptibility to oxidation by KNMO4 in different farming system in Slovakia. In Humic Substances in The Enviroment, vol. 1, pp. 35–39. ŠIMANSKÝ, V. et al. (2017) Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. In Journal of Soil and Sediments, pp. 1–9. DOI: https:// doi.org/10.1007/s11368-017-1886-y ŠIMANSKÝ, V. (2016) Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. In Acta fytotechnica et zootechnica, vol. 19, pp. 129–138. DOI: http://dx.doi.org/10.15414/afz.2016.19.04.129-138 ŠIMANSKÝ, V. (2017) Is the period of 18 years sufficient for an evaluation of changes in soil organic carbon under a variety of different soil management practices? In Communications in Soil Science and Plant Analysis, vol. 48, pp.37–42. DOI: https:// doi.org/10.1080/00103624.2016.1253717 ŠIMANSKÝ, V. and BAJČAN, D. (2014) Stability of soil aggregates and their ability of carbon sequestration. In Soil and Water Res., vol. 9, pp. 111–118 ŠIMANSKÝ, V. and POLLÁKOVÁ, N. (2014) Soil organic matter and sorption capacity under different soil management practices in a productive vineyard. In Archives of Agronomy and Soil Science, vol. 59, pp. 1145– 1154. DOI: https://doi.org/10.108003650340.865837 ŠIMANSKÝ, V. and POLLÁKOVÁ, N. (2016) The effects of soil management particles on soil organic matter changes within a productive vineyard in the Nitra viticulture area (Slovakia). In Agriculture, vol. 61, pp. 28–40. DOI: https://doi.org/10.1515/ agri-2016-0001 ŠIMANSKÝ, V. et al. (2013) The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. In Catena, vol. 101, pp. 108–113. DOI: https://doi.org/10.1016/j.catena.2012.10.011 ŠIMANSKÝ, V. et al. (2016) How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? In Biologia, vol. 71 (9), pp. 989–995. DOI: http://dx.doi.org/10.1515/biolog-2016-0122 ŠIMANSKÝ, V. et al. (2017a) Carbon sequestration in waterstable aggregates under biochar and biochar with nitrogen fertilization. In Bulgrian Journal of Agricultural Research, vol. 23, no. 3, pp. 429–435. USMAN, A. R. et al. (2015) Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. In Journal of Analytical and Applied Pyrolysis, vol. 115, pp. 392–400. DOI: https://doi. org/10.1016/j.jaap.2015.08.016 WANG, K. and XING, B. (2005) Structural and sorption characteristics of adsorped humid acid on clay minerals. In American Society of Agronomy, vol. 31, pp. 342–349. DOI: https://doi.org/10.2134/jeg2005.0342 YEBOAH, E. et al. (2009) Improving soil productivity through biochar amendments to soil. In African Journal of Environmental Science and Technology, vol. 3, pp. 34–41. ZHANG, A. et al. (2010) Effect of biochar amendment on yield and methane and nitrous oxide emission from rice paddy from Tai Lake plain, China. In Agriculture, Ecosystems and Environment, vol. 139, pp. 469–475. DOI: https://doi. org/10.1016/j.agee.2010.09.003 ZIELIŃSKA, A. et al. (2015) Effect of sewage sludge properties on the biochar characteristic. In Journal of Analytical and Applied Pyrolysis, vol. 112, pp. 201–213. DOI: https://doi.org/10.1016/j. jaap.2015.01.025 ZWIETEN, L. et al. (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. In Plant and Soil, vol. 327, pp. 235–246. DOI: https:// doi.org/10.1007/s11104-009-005-x

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优势构象发布了新的文献求助10
1秒前
48秒前
天天快乐应助优雅的涵瑶采纳,获得10
53秒前
这个手刹不太灵完成签到 ,获得积分10
54秒前
59秒前
baymin完成签到 ,获得积分10
1分钟前
优雅的涵瑶完成签到,获得积分20
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得20
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
去去去去完成签到,获得积分10
1分钟前
1分钟前
去去去去发布了新的文献求助30
1分钟前
1分钟前
1分钟前
SciGPT应助去去去去采纳,获得10
1分钟前
2分钟前
潘善若发布了新的文献求助10
2分钟前
Perion完成签到 ,获得积分10
2分钟前
潘善若完成签到,获得积分10
2分钟前
kkk驳回了Ava应助
2分钟前
犹豫的晓丝完成签到 ,获得积分10
2分钟前
呆萌的傲蕾完成签到,获得积分20
2分钟前
FashionBoy应助Elena采纳,获得10
2分钟前
李爱国应助呆萌的傲蕾采纳,获得10
2分钟前
落后的西牛完成签到 ,获得积分10
3分钟前
搜集达人应助不安映秋采纳,获得10
3分钟前
侯小菊完成签到,获得积分20
3分钟前
3分钟前
Elena发布了新的文献求助10
3分钟前
科研通AI2S应助Elena采纳,获得10
3分钟前
gaberella发布了新的文献求助10
3分钟前
4分钟前
4分钟前
orixero应助gaberella采纳,获得10
4分钟前
Rn完成签到 ,获得积分10
4分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793553
关于积分的说明 7806860
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303455
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314