Pump-probe microscopy of tailored ultrashort laser pulses for glass separation processes

材料科学 显微镜 激光器 光学 超短脉冲 光电子学 超快光学 物理
作者
Michael Jenne,Daniel Flamm,Max Faber,Daniel Großmann,Jonas Kleiner,Felix Zimmermann,Malte Kumkar,Stefan Nolte
标识
DOI:10.1117/12.2506991
摘要

The confined and tailored interaction of ultrashort laser pulses with wide band-gap materials such as glass led to a broad range of applications and processing methods throughout recent years, especially for glass cutting. One major benefit of the short pulse duration is to locally modify a defined area inside of the glass volume. By stringing together numerous modifications along a desired contour, a preferential separation path can be created. However, complex contours and the extension to glasses of several millimeters thickness remain a challenging task due to the generation of cracks with undesired orientation, which antagonize the preferred separation direction. This might result in a loss of quality and stability due to rough cutting surfaces or even a lack of separability. A prominent example for single pass cutting profiles are Bessel-like beams. Their elongated but transversally confined intensity profile facilitate the homogeneous modification on a millimeter length-scale. Moreover, advanced beam shaping enables laterally anisotropic beam shapes leading to a preferential direction for crack propagation and allows to further increase the quality and process management. We employ pump-probe microscopy to study the effect of the interaction of single and multiple laser pulses. The combination of transmission microscopy, polarization microscopy and cutting processes under observation for time delays up to several microseconds allows the in situ detection of pressure waves and transient stress. Camera recording rates in the 100 kHz range allow the continuous detection of stress- and crack-formation and eliminate stochastic uncertainties. In combination with multipulse experiments and glass samples under feed rate, a profound understanding of cleaving applications is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TanFT发布了新的文献求助10
刚刚
蓝蜗牛完成签到,获得积分10
3秒前
Qyyy发布了新的文献求助10
3秒前
思源应助风止采纳,获得10
4秒前
4秒前
李爱国应助嗝嗝采纳,获得10
5秒前
杨杨发布了新的文献求助10
6秒前
华仔应助小菜菜采纳,获得10
6秒前
TanFT完成签到,获得积分10
6秒前
ee发布了新的文献求助30
8秒前
科研通AI2S应助yk采纳,获得10
10秒前
漂亮德地完成签到,获得积分10
11秒前
从容道罡完成签到,获得积分10
11秒前
科研通AI2S应助莽哥采纳,获得30
13秒前
李爱国应助务实冷风采纳,获得10
13秒前
矫仁瑞发布了新的文献求助10
13秒前
发疯的乔治完成签到,获得积分10
13秒前
liming发布了新的文献求助10
14秒前
14秒前
叶子完成签到,获得积分10
15秒前
19秒前
四季养生人完成签到 ,获得积分10
19秒前
星辰大海应助yo1nang采纳,获得10
20秒前
20秒前
20秒前
22秒前
Lucas应助杨杨采纳,获得10
23秒前
子车茗应助xhj采纳,获得10
23秒前
24秒前
高寒天发布了新的文献求助10
24秒前
禾日青发布了新的文献求助10
25秒前
结实的保温杯完成签到,获得积分10
25秒前
毛毛高发布了新的文献求助10
25秒前
26秒前
雪雪完成签到 ,获得积分10
26秒前
西岭完成签到,获得积分20
27秒前
yk发布了新的文献求助10
27秒前
乐乐乐乐乐乐应助zhf采纳,获得10
29秒前
30秒前
SCI孵化中心完成签到 ,获得积分20
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449