Pump-probe microscopy of tailored ultrashort laser pulses for glass separation processes

材料科学 显微镜 激光器 光学 超短脉冲 光电子学 超快光学 物理
作者
Michael Jenne,Daniel Flamm,Max Faber,Daniel Großmann,Jonas Kleiner,Felix Zimmermann,Malte Kumkar,Stefan Nolte
标识
DOI:10.1117/12.2506991
摘要

The confined and tailored interaction of ultrashort laser pulses with wide band-gap materials such as glass led to a broad range of applications and processing methods throughout recent years, especially for glass cutting. One major benefit of the short pulse duration is to locally modify a defined area inside of the glass volume. By stringing together numerous modifications along a desired contour, a preferential separation path can be created. However, complex contours and the extension to glasses of several millimeters thickness remain a challenging task due to the generation of cracks with undesired orientation, which antagonize the preferred separation direction. This might result in a loss of quality and stability due to rough cutting surfaces or even a lack of separability. A prominent example for single pass cutting profiles are Bessel-like beams. Their elongated but transversally confined intensity profile facilitate the homogeneous modification on a millimeter length-scale. Moreover, advanced beam shaping enables laterally anisotropic beam shapes leading to a preferential direction for crack propagation and allows to further increase the quality and process management. We employ pump-probe microscopy to study the effect of the interaction of single and multiple laser pulses. The combination of transmission microscopy, polarization microscopy and cutting processes under observation for time delays up to several microseconds allows the in situ detection of pressure waves and transient stress. Camera recording rates in the 100 kHz range allow the continuous detection of stress- and crack-formation and eliminate stochastic uncertainties. In combination with multipulse experiments and glass samples under feed rate, a profound understanding of cleaving applications is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bono完成签到 ,获得积分10
刚刚
刚刚
1秒前
又要起名字关注了科研通微信公众号
2秒前
可爱的函函应助su采纳,获得10
2秒前
3秒前
澳澳完成签到,获得积分10
4秒前
4秒前
善学以致用应助纯真抽屉采纳,获得10
5秒前
5秒前
笑笑发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
Hello应助cora采纳,获得10
8秒前
汉唐精彩完成签到,获得积分10
9秒前
9秒前
10秒前
田茂青完成签到,获得积分10
10秒前
damian发布了新的文献求助30
10秒前
10秒前
聪明芒果完成签到,获得积分10
10秒前
Vvvvvvv应助虫二先生采纳,获得10
10秒前
西大研究生完成签到 ,获得积分10
10秒前
11秒前
11秒前
呆呆完成签到,获得积分10
11秒前
左一酱完成签到 ,获得积分10
12秒前
平淡南霜发布了新的文献求助10
12秒前
Sweet关注了科研通微信公众号
12秒前
12秒前
赘婿应助wangfu采纳,获得10
13秒前
13秒前
13秒前
pipge完成签到,获得积分20
13秒前
14秒前
澳澳发布了新的文献求助10
14秒前
15秒前
清脆的映天完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794