Computing Tire Component Durability via Critical Plane Analysis

材料科学 结构工程 裂缝闭合 平面应力 断裂力学 有限元法 复合材料 工程类
作者
William V. Mars,Yintao Wei,Wang Hao,Mark P. Bauman
出处
期刊:Tire Science and Technology [The Tire Society]
卷期号:47 (1): 31-54 被引量:12
标识
DOI:10.2346/tire.19.150090
摘要

ABSTRACT Tire developers are responsible for designing against the possibility of crack development in each of the various components of a tire. The task requires knowledge of the fatigue behavior of each compound in the tire, as well as adequate accounting for the multiaxial stresses carried by tire materials. The analysis is illustrated here using the Endurica CL fatigue solver for the case of a 1200R20 TBR tire operating at 837 kPa under loads ranging from 66 to 170% of rated load. The fatigue behavior of the tire's materials is described from a fracture mechanical viewpoint, with care taken to specify each of the several phenomena (crack growth rate, crack precursor size, strain crystallization, fatigue threshold) that govern. The analysis of crack development is made by considering how many cycles are required to grow cracks of various potential orientations at each element of the model. The most critical plane is then identified as the plane with the shortest fatigue life. We consider each component of the tire and show that where cracks develop from precursors intrinsic to the rubber compound (sidewall, tread grooves, innerliner) the critical plane analysis provides a comprehensive view of the failure mechanics. For cases where a crack develops near a stress singularity (i.e., belt-edge separation), the critical plane analysis remains advantageous for design guidance, particularly relative to analysis approaches based upon scalar invariant theories (i.e., strain energy density) that neglect to account for crack closure effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔斯基完成签到 ,获得积分10
刚刚
影子完成签到,获得积分20
1秒前
Jian完成签到,获得积分10
1秒前
lilili完成签到,获得积分10
1秒前
哈哈哈完成签到,获得积分10
1秒前
前进的光完成签到,获得积分10
2秒前
ccalvintan完成签到,获得积分10
3秒前
linda完成签到,获得积分10
3秒前
4秒前
4秒前
尔东完成签到,获得积分10
4秒前
博雅雅雅雅雅完成签到,获得积分10
4秒前
睡醒的庄周完成签到,获得积分10
4秒前
風來完成签到,获得积分10
4秒前
fqpang完成签到 ,获得积分10
5秒前
东皇太一完成签到,获得积分10
5秒前
举个栗子完成签到,获得积分10
6秒前
Hiccup完成签到,获得积分10
6秒前
Ansels完成签到,获得积分20
6秒前
小圆脸发布了新的文献求助10
7秒前
hbydyy给hbydyy的求助进行了留言
7秒前
星辰大海应助听话的白易采纳,获得10
7秒前
aaaa完成签到,获得积分10
7秒前
小周小周完成签到,获得积分10
8秒前
月满西楼完成签到,获得积分10
8秒前
8秒前
荆轲刺秦王完成签到 ,获得积分10
8秒前
泯恩仇完成签到 ,获得积分10
8秒前
Dr彭0923完成签到,获得积分10
9秒前
9秒前
貔貅发布了新的文献求助10
9秒前
情怀应助尘南浔采纳,获得10
9秒前
chun完成签到 ,获得积分10
9秒前
程程程发布了新的文献求助10
9秒前
10秒前
zz完成签到,获得积分10
10秒前
hashtag完成签到,获得积分10
11秒前
江蓠完成签到,获得积分10
11秒前
冰饼子完成签到,获得积分10
11秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134170
求助须知:如何正确求助?哪些是违规求助? 2785077
关于积分的说明 7769993
捐赠科研通 2440590
什么是DOI,文献DOI怎么找? 1297488
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792