已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A reliable LC-MS/MS method for the quantification of natural amino acids in mouse plasma: Method validation and application to a study on amino acid dynamics during hepatocellular carcinoma progression

化学 色谱法 肝细胞癌 氨基酸 动力学(音乐) 生物化学 声学 生物 物理 癌症研究
作者
Zhenzhen Liu,Mei‐Juan Tu,Chao Zhang,Joseph L. Jilek,Qian-Yu Zhang,Ai‐Ming Yu
出处
期刊:Journal of Chromatography B [Elsevier]
卷期号:1124: 72-81 被引量:50
标识
DOI:10.1016/j.jchromb.2019.05.039
摘要

A simple and fast LC-MS/MS method was developed and validated for simultaneous quantification of 20 proteinogenic l-amino acids (AAs) in a small volume (5 μL) of mouse plasma. Chromatographic separation was achieved on an Intrada Amino Acid column within 13 min via gradient elution with an aqueous solution containing 100 mM ammonium formate and an organic mobile phase containing acetonitrile, water and formic acid (v:v:v = 95:5:0.3), at the flow rate of 0.6 mL/min. Individual AAs and corresponding stable-isotope-labeled AAs internal standards were analyzed by multiple reaction monitoring (MRM) in positive ion mode under optimized conditions. Method validation consisted of linearity, sensitivity, accuracy and precision, recovery, matrix effect, and stability, and the results demonstrated this LC-MS/MS method as a specific, accurate, and reliable assay. This LC-MS/MS method was thus utilized to compare the dynamics of individual plasma AAs between healthy and orthotopic hepatocellular carcinoma (HCC) xenograft mice housed under identical conditions. Our results revealed that, 5 weeks after HCC tumor progression, plasma l-arginine concentrations were significantly decreased in HCC mice while l-alanine and l-threonine levels were sharply increased. These findings support the utilities of this LC-MS/MS method and the promise of specific AAs as possible biomarkers for HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QH发布了新的文献求助10
刚刚
佳妮发布了新的文献求助10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Tanyang应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Owen应助科研通管家采纳,获得30
3秒前
3秒前
centlay发布了新的文献求助10
3秒前
明亮夕阳完成签到,获得积分10
4秒前
ding应助温暖的幼枫采纳,获得10
4秒前
善学以致用应助视野胤采纳,获得10
4秒前
尹不愁发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
Lucas应助QH采纳,获得10
8秒前
温暖的幼枫完成签到,获得积分10
9秒前
Pepsi完成签到,获得积分10
10秒前
wangcaoyi667发布了新的文献求助10
10秒前
研友_Z7Xvl8发布了新的文献求助10
11秒前
可爱的函函应助arthurge采纳,获得10
11秒前
善学以致用应助arthurge采纳,获得10
11秒前
Jasper应助arthurge采纳,获得10
11秒前
丘比特应助arthurge采纳,获得10
11秒前
烟花应助arthurge采纳,获得10
11秒前
搜集达人应助arthurge采纳,获得10
11秒前
田様应助arthurge采纳,获得10
11秒前
Owen应助arthurge采纳,获得10
11秒前
SciGPT应助arthurge采纳,获得10
11秒前
cocolu应助arthurge采纳,获得10
11秒前
13秒前
14秒前
16秒前
CipherSage应助wangcaoyi667采纳,获得10
16秒前
16秒前
从容的盼晴完成签到,获得积分10
19秒前
Dprisk完成签到,获得积分20
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491136
求助须知:如何正确求助?哪些是违规求助? 3077792
关于积分的说明 9150450
捐赠科研通 2770267
什么是DOI,文献DOI怎么找? 1520222
邀请新用户注册赠送积分活动 704531
科研通“疑难数据库(出版商)”最低求助积分说明 702202