A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss‐Newton to Robust Gauss‐Newton

数学优化 启发式 计算机科学 局部最优 稳健性(进化) 算法 数学 生物化学 基因 化学
作者
Youwei Qin,Dmitri Kavetski,George Kuczera
出处
期刊:Water Resources Research [Wiley]
卷期号:54 (11): 9655-9683 被引量:25
标识
DOI:10.1029/2017wr022488
摘要

Abstract Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation ( sampling scale ) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spongeeeee发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
enchanted发布了新的文献求助10
刚刚
Ava应助lymmei采纳,获得10
刚刚
liii完成签到,获得积分10
3秒前
3秒前
葡萄成熟发布了新的文献求助10
5秒前
FDD发布了新的文献求助30
6秒前
星辰大海应助佳hia采纳,获得10
6秒前
晨丶完成签到,获得积分10
8秒前
小野完成签到,获得积分10
8秒前
sx发布了新的文献求助10
9秒前
俭朴自中完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
方文琛完成签到,获得积分10
13秒前
科研通AI2S应助Wei采纳,获得10
13秒前
yiyi发布了新的文献求助30
15秒前
18秒前
葡萄成熟发布了新的文献求助10
19秒前
Wayne72完成签到,获得积分0
20秒前
情怀应助早岁采纳,获得10
21秒前
列苑苑发布了新的文献求助10
23秒前
李爱国应助芸栀采纳,获得10
23秒前
25秒前
单薄忆秋发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
Rondab应助Hexagram采纳,获得10
29秒前
30秒前
31秒前
动人的cc发布了新的文献求助10
31秒前
苏苏发布了新的文献求助10
31秒前
合适板栗完成签到,获得积分10
31秒前
今后应助sakegeda采纳,获得10
31秒前
liuniuniu完成签到,获得积分10
32秒前
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202