A Robust Gauss‐Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss‐Newton to Robust Gauss‐Newton

数学优化 启发式 计算机科学 局部最优 稳健性(进化) 算法 数学 生物化学 基因 化学
作者
Youwei Qin,Dmitri Kavetski,George Kuczera
出处
期刊:Water Resources Research [Wiley]
卷期号:54 (11): 9655-9683 被引量:25
标识
DOI:10.1029/2017wr022488
摘要

Abstract Model calibration using optimization algorithms is a perennial challenge in hydrological modeling. This study explores opportunities to improve the efficiency of a Newton‐type method by making it more robust against problematic features in models' objective functions, including local optima and other noise. We introduce the robust Gauss‐Newton (RGN) algorithm for least squares optimization, which employs three heuristic schemes to enhance its exploratory abilities while keeping costs low. The large sampling scale (LSS) scheme is a central difference approximation with perturbation ( sampling scale ) made as large as possible to capture the overall objective function shape; the best‐sampling point (BSP) scheme exploits known function values to detect better parameter locations; and the null‐space jump (NSJ) scheme attempts to escape near‐flat regions. The RGN heuristics are evaluated using a case study comprising four hydrological models and three catchments. The heuristics make synergistic contributions to overall efficiency: the LSS scheme substantially improves reliability albeit at the expense of increased costs, and scenarios where LSS on its own is ineffective are bolstered by the BSP and NSJ schemes. In 11 of 12 modeling scenarios, RGN is 1.4–18 times more efficient in finding the global optimum than the standard Gauss‐Newton algorithm; similar gains are made in finding tolerable optima. Importantly, RGN offers its largest gains when working with difficult objective functions. The empirical analysis provides insights into tradeoffs between robustness versus cost, exploration versus exploitation, and how to manage these tradeoffs to maximize optimization efficiency. In the companion paper, the RGN algorithm is benchmarked against industry standard optimization algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快的谷梦完成签到,获得积分10
刚刚
刚刚
猪猪hero发布了新的文献求助10
1秒前
...完成签到,获得积分10
1秒前
1秒前
pluto应助Frank采纳,获得10
2秒前
三磷酸腺苷完成签到 ,获得积分10
2秒前
2秒前
请叫我风吹麦浪应助jbhb采纳,获得10
2秒前
2秒前
小李叭叭完成签到,获得积分10
3秒前
打打应助LiShin采纳,获得10
4秒前
4秒前
Orange应助luuuuuu采纳,获得10
5秒前
5秒前
个性的大地完成签到,获得积分10
6秒前
kawayifenm完成签到,获得积分10
6秒前
lxh2424发布了新的文献求助30
6秒前
Rezeal完成签到 ,获得积分10
6秒前
w.h发布了新的文献求助10
6秒前
星星发布了新的文献求助10
6秒前
可爱的函函应助jy采纳,获得10
7秒前
seal完成签到,获得积分10
7秒前
你hao发布了新的文献求助10
7秒前
7秒前
yml完成签到,获得积分10
7秒前
小只bb发布了新的文献求助30
8秒前
有益完成签到,获得积分10
8秒前
9秒前
zhui发布了新的文献求助10
9秒前
嘻嘻发布了新的文献求助10
10秒前
斯文静曼发布了新的文献求助10
10秒前
yml发布了新的文献求助10
11秒前
ixxxy完成签到,获得积分10
11秒前
猪猪hero发布了新的文献求助10
12秒前
你hao完成签到,获得积分10
12秒前
wwx发布了新的文献求助10
12秒前
西红柿有股番茄味给西红柿有股番茄味的求助进行了留言
12秒前
斯文芷荷发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794