Quantifying and presenting overall evidence in network meta‐analysis

成对比较 样本量测定 计算机科学 样品(材料) 证据质量 荟萃分析 质量(理念) 计量经济学 统计 人工智能 数学 医学 哲学 化学 认识论 色谱法 内科学
作者
Lifeng Lin
出处
期刊:Statistics in Medicine [Wiley]
卷期号:37 (28): 4114-4125 被引量:8
标识
DOI:10.1002/sim.7905
摘要

Network meta‐analysis (NMA) has become an increasingly used tool to compare multiple treatments simultaneously by synthesizing direct and indirect evidence in clinical research. However, many existing studies did not properly report the evidence of treatment comparisons and show the comparison structure to audience. In addition, nearly all treatment networks presented only direct evidence, not overall evidence that can reflect the benefit of performing NMAs. This article classifies treatment networks into three types under different assumptions; they include networks with each treatment comparison's edge width proportional to the corresponding number of studies, sample size, and precision. In addition, three new measures (ie, the effective number of studies, the effective sample size, and the effective precision) are proposed to preliminarily quantify overall evidence gained in NMAs. They permit audience to intuitively evaluate the benefit of performing NMAs, compared with pairwise meta‐analyses based on only direct evidence. We use four case studies, including one illustrative example, to demonstrate their derivations and interpretations. Treatment networks may look fairly differently when different measures are used to present the evidence. The proposed measures provide clear information about overall evidence of all treatment comparisons, and they also imply the additional number of studies, sample size, and precision obtained from indirect evidence. Some comparisons may benefit little from NMAs. Researchers are encouraged to present overall evidence of all treatment comparisons, so that audience can preliminarily evaluate the quality of NMAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知趣完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
烟花应助王企鹅采纳,获得10
2秒前
2秒前
靓丽的胜完成签到,获得积分10
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Cris完成签到,获得积分10
4秒前
田様应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得30
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
不配.应助BLDYT采纳,获得20
6秒前
lily88发布了新的文献求助10
6秒前
orixero应助沉静苑睐采纳,获得10
6秒前
7秒前
靓丽的胜发布了新的文献求助10
7秒前
老猪佩奇完成签到,获得积分20
7秒前
8秒前
烈酒一醉方休完成签到 ,获得积分10
9秒前
呼吸小研狗完成签到,获得积分10
10秒前
黑熊精完成签到,获得积分10
12秒前
12秒前
lh发布了新的文献求助10
13秒前
我爱夏天完成签到,获得积分10
14秒前
man发布了新的文献求助10
16秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053