Development of the post-form strength prediction model for a high-strength 6xxx aluminium alloy with pre-existing precipitates and residual dislocations

材料科学 沉淀硬化 粘塑性 硬化(计算) 流动应力 合金 本构方程 残余应力 降水 位错 应变硬化指数 铝合金 冶金 复合材料 热力学 有限元法 气象学 物理 图层(电子)
作者
Qunli Zhang,Xi Luan,Saksham Dhawan,Denis J. Politis,Qiang Du,M.W. Fu,Kehuan Wang,Mohammad M. Gharbi,Liliang Wang
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:119: 230-248 被引量:49
标识
DOI:10.1016/j.ijplas.2019.03.013
摘要

The applications of lightweight and high strength sheet aluminium alloys are increasing rapidly in the automotive industry due to the expanding global demand in this industrial cluster. Accurate prediction of the post-form strength and the microstructural evolutions of structural components made of Al-alloys has been a challenge, especially when the material undergoes complex processes involving ultra-fast heating and high temperature deformation, followed by multi-stage artificial ageing treatment. In this research, the effects of pre-existing precipitates induced during ultra-fast heating and residual dislocations generated through high temperature deformation on precipitation hardening behaviour have been investigated. A mechanism-based post-form strength (PFS) prediction model, incorporating the flow stress model and age-hardening model, was developed ab-initio to predict strength evolution during the whole process. To model the stress-strain viscoplastic behaviour and represent the evolution of dislocation density of the material in forming process, constitutive models were proposed and the related equations were formulated. The effect of pre-existing precipitates was considered in the age-hardening model via introducing the complex correlations of microstructural variables into the model. In addition, an alternative time-equivalent method was developed to link the different stages of ageing and hence the prediction of precipitation behaviours in multi-stage ageing was performed. Furthermore, forming tests of a U-shaped component were performed to verify the model. It was found that the model is able to accurately predict the post-form strength with excellent agreement with deviation of less than 5% when extensively validated by experimental data. Therefore, the model is considered to be competent for predicting the pre-empting material response as well as a powerful tool for optimising forming parameters to exploit age hardening to its maximum potential in real manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王半书完成签到 ,获得积分10
刚刚
biubiubiu完成签到 ,获得积分10
刚刚
2秒前
2秒前
3秒前
xiaojingling完成签到,获得积分10
4秒前
Eric_Z完成签到,获得积分10
5秒前
可爱奇异果完成签到 ,获得积分10
7秒前
7秒前
李清湛完成签到,获得积分10
7秒前
7秒前
小张呢好完成签到,获得积分10
8秒前
完美的海秋发布了新的文献求助200
9秒前
现实马里奥完成签到,获得积分10
9秒前
共享精神应助哈哈采纳,获得10
9秒前
10秒前
萧布完成签到,获得积分10
11秒前
打打应助默默的白莲采纳,获得10
11秒前
Akim应助唐三神奇采纳,获得10
13秒前
Hello应助俭朴千万采纳,获得10
14秒前
15秒前
16秒前
123完成签到 ,获得积分10
16秒前
17秒前
Danielle完成签到,获得积分10
18秒前
Bressanone完成签到,获得积分10
19秒前
zhou国兵完成签到,获得积分10
19秒前
姜小米完成签到,获得积分10
19秒前
玩儿完成签到,获得积分10
19秒前
20秒前
20秒前
斯文又夏完成签到,获得积分10
21秒前
21秒前
隐形曼青应助祥子的骆驼采纳,获得10
21秒前
22秒前
蓝天小小鹰完成签到 ,获得积分10
23秒前
Niuma发布了新的文献求助10
24秒前
舒适的梦玉完成签到,获得积分10
24秒前
元元完成签到,获得积分10
24秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242302
求助须知:如何正确求助?哪些是违规求助? 2886700
关于积分的说明 8244403
捐赠科研通 2555206
什么是DOI,文献DOI怎么找? 1383290
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625499