计算机科学
分布式学习
联合学习
块(置换群论)
分布式计算
延迟(音频)
计算
建筑
块链
计算机网络
人工智能
电信
计算机安全
算法
数学
几何学
艺术
视觉艺术
教育学
心理学
作者
Hyesung Kim,Jihong Park,Mehdi Bennis,Seong-Lyun Kim
标识
DOI:10.1109/lcomm.2019.2921755
摘要
By leveraging blockchain, this letter proposes a blockchained federated learning (BlockFL) architecture where local learning model updates are exchanged and verified. This enables on-device machine learning without any centralized training data or coordination by utilizing a consensus mechanism in blockchain. Moreover, we analyze an end-to-end latency model of BlockFL and characterize the optimal block generation rate by considering communication, computation, and consensus delays.
科研通智能强力驱动
Strongly Powered by AbleSci AI