Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection

血脑屏障 紧密连接 运输机 平衡 微血管 神经科学 流出 冲程(发动机) 内皮功能障碍 内生 医学 生物 药理学 细胞生物学 中枢神经系统 内科学 血管生成 基因 生物化学 工程类 机械工程
作者
Wazir Abdullahi,Dinesh Kumar Tripathi,Patrick T. Ronaldson
出处
期刊:American Journal of Physiology-cell Physiology [American Physiological Society]
卷期号:315 (3): C343-C356 被引量:445
标识
DOI:10.1152/ajpcell.00095.2018
摘要

The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely controls cerebral homeostasis. It also plays a central role in the regulation of blood-to-brain flux of endogenous and exogenous xenobiotics and associated metabolites. This is accomplished by molecular characteristics of brain microvessel endothelial cells such as tight junction protein complexes and functional expression of influx and efflux transporters. One of the pathophysiological features of ischemic stroke is disruption of the BBB, which significantly contributes to development of brain injury and subsequent neurological impairment. Biochemical characteristics of BBB damage include decreased expression and altered organization of tight junction constituent proteins as well as modulation of functional expression of endogenous BBB transporters. Therefore, there is a critical need for development of novel therapeutic strategies that can protect against BBB dysfunction (i.e., vascular protection) in the setting of ischemic stroke. Such strategies include targeting tight junctions to ensure that they maintain their correct structure or targeting transporters to control flux of physiological substrates for protection of endothelial homeostasis. In this review, we will describe the pathophysiological mechanisms in cerebral microvascular endothelial cells that lead to BBB dysfunction following onset of stroke. Additionally, we will utilize this state-of-the-art knowledge to provide insights on novel pharmacological strategies that can be developed to confer BBB protection in the setting of ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小犁牛完成签到 ,获得积分10
2秒前
cfpilot完成签到,获得积分10
2秒前
四文鱼发布了新的文献求助10
3秒前
甜甜发布了新的文献求助10
3秒前
安然僧发布了新的文献求助10
3秒前
3秒前
哈哈酱lj发布了新的文献求助10
3秒前
瑞秋发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
ChristineY发布了新的文献求助10
5秒前
6秒前
6秒前
复杂函完成签到,获得积分10
6秒前
snow_dragon完成签到 ,获得积分10
7秒前
幽幽完成签到,获得积分20
8秒前
慕雨倾欣完成签到,获得积分10
8秒前
款冬发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
杨Yang完成签到 ,获得积分10
10秒前
10秒前
10秒前
DR_Su完成签到,获得积分10
11秒前
li发布了新的文献求助10
11秒前
冠希发布了新的文献求助10
11秒前
12秒前
12秒前
HM发布了新的文献求助10
12秒前
科研通AI5应助瑞秋采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
abc97完成签到,获得积分10
14秒前
Proddy发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153