计算机科学
经济调度
订单(交换)
运筹学
比例(比率)
订单履行
数学优化
工业工程
工程类
供应链
电力系统
功率(物理)
经济
物理
量子力学
数学
法学
政治学
财务
作者
Zhe Xu,Zhixin Li,Qingwen Guan,Dingshui Zhang,Qiang Li,Junxiao Nan,Chunyang Liu,Wei Bian,Jieping Ye
标识
DOI:10.1145/3219819.3219824
摘要
We present a novel order dispatch algorithm in large-scale on-demand ride-hailing platforms. While traditional order dispatch approaches usually focus on immediate customer satisfaction, the proposed algorithm is designed to provide a more efficient way to optimize resource utilization and user experience in a global and more farsighted view. In particular, we model order dispatch as a large-scale sequential decision-making problem, where the decision of assigning an order to a driver is determined by a centralized algorithm in a coordinated way. The problem is solved in a learning and planning manner: 1) based on historical data, we first summarize demand and supply patterns into a spatiotemporal quantization, each of which indicates the expected value of a driver being in a particular state; 2) a planning step is conducted in real-time, where each driver-order-pair is valued in consideration of both immediate rewards and future gains, and then dispatch is solved using a combinatorial optimizing algorithm. Through extensive offline experiments and online AB tests, the proposed approach delivers remarkable improvement on the platform's efficiency and has been successfully deployed in the production system of Didi Chuxing.
科研通智能强力驱动
Strongly Powered by AbleSci AI