The relationships between urban landscape patterns and fine particulate pollution in China: A multiscale investigation using a geographically weighted regression model

中国 污染 地理 城市群 环境科学 自然地理学 空气污染 地理加权回归模型 经济地理学 生态学 统计 数学 生物 考古
作者
Mengzhao Tu,Zhifeng Liu,Chunyang He,Zihang Fang,Wenlu Lu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:237: 117744-117744 被引量:34
标识
DOI:10.1016/j.jclepro.2019.117744
摘要

Providing accurate assessments of the relationships between urban landscape patterns and PM2.5 pollution is essential for improving urban sustainability in China. Accordingly, this paper uses a geographically weighted regression model to reveal the relationships between urban landscape patterns and PM2.5 pollution at different scales in China. First, we identified the level of PM2.5 pollution in China and quantified the urban landscape patterns based on the landscape metrics in 2015. Then, we analyzed the relationships between urban landscape patterns and PM2.5 pollution using geographically weighted regression with the county as the basic analytical unit. Finally, the spatial characteristics of the relationships between urban landscape patterns and PM2.5 pollution were analyzed at the national, regional and provincial scales. We found that the PM2.5 pollution in China was closely related to urban landscape patterns, with obvious spatial heterogeneity. The total area with a significant correlation between the urban landscape patterns (which were measured using the percentage of urban landscape, edge density, and patch density) and PM2.5 pollution ranged from 2.07 × 106 km2 to 2.26 × 106 km2, accounting for 42.55%–46.59% of the total PM2.5-polluted area in China. The high correlations were concentrated mainly in five provinces, namely, Xinjiang, Shaanxi, Fujian, Chongqing and Guangdong. We also found that the relationships between urban landscape patterns and PM2.5 pollution were stronger in urban agglomerations. The total area with a significant correlation between the urban landscape patterns and PM2.5 pollution was 9.20 × 105 km2, occupying 65.55% of the entire urban agglomeration area; this percentage was nearly 14% higher than the national average level. The strongest relationship was observed in the Northern Tianshan Mountains urban agglomeration. Contrasting with previous studies, our study fully considered the spatial autocorrelation and spatial differences between variables by using geographically weighted regression and clarified the spatial heterogeneity of the relationships between urban landscape patterns and PM2.5 pollution in China. Our findings imply that special attention must be paid to the urban landscape patterns in urban agglomerations during future urban development in China. Furthermore, effective regulations must be implemented to reduce the impacts of urban landscape patterns on PM2.5 pollution by controlling urban expansion and optimizing the spatial patterns of urban landscapes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖元容完成签到,获得积分10
1秒前
y彤发布了新的文献求助10
2秒前
科研通AI2S应助开心市民采纳,获得10
5秒前
所所应助zyy采纳,获得10
6秒前
7秒前
8秒前
情怀应助高贵的鱼采纳,获得10
8秒前
纪问安完成签到,获得积分10
9秒前
11秒前
科研通AI2S应助Hh采纳,获得30
11秒前
12秒前
12秒前
JeromineJade完成签到,获得积分10
14秒前
科研打工人完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
18秒前
怡然冷梅发布了新的文献求助10
18秒前
19秒前
小6s完成签到,获得积分10
19秒前
陆碌路发布了新的文献求助10
21秒前
21秒前
moaper发布了新的文献求助10
22秒前
zzz应助123采纳,获得10
22秒前
23秒前
ABS发布了新的文献求助10
23秒前
23秒前
23秒前
26秒前
my完成签到,获得积分10
27秒前
半雨叹发布了新的文献求助10
27秒前
星曳发布了新的文献求助10
28秒前
29秒前
英姑应助moaper采纳,获得10
30秒前
Liu完成签到 ,获得积分10
31秒前
舒心小猫咪完成签到 ,获得积分10
31秒前
玫瑰窃贼(情绪稳定版)完成签到,获得积分10
31秒前
32秒前
chen0815发布了新的文献求助10
33秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170264
求助须知:如何正确求助?哪些是违规求助? 2821446
关于积分的说明 7934195
捐赠科研通 2481692
什么是DOI,文献DOI怎么找? 1322045
科研通“疑难数据库(出版商)”最低求助积分说明 633451
版权声明 602595