Accurate segmentation of overlapping cells in cervical cytology with deep convolutional neural networks

人工智能 分割 计算机科学 卷积神经网络 模式识别(心理学) Sørensen–骰子系数 深度学习 图像分割 像素 计算机视觉
作者
Tao Wan,Shusong Xu,Chen Sang,Yulan Jin,Zengchang Qin
出处
期刊:Neurocomputing [Elsevier]
卷期号:365: 157-170 被引量:63
标识
DOI:10.1016/j.neucom.2019.06.086
摘要

Accurate cell segmentation is essential for computer-aided diagnosis of cervical precancerous lesions in cytology images. Automated segmentation poses a great challenge due to the presence of fuzzy and overlapping cells, noisy background, and poor cytoplasmic contrast. Deep learning diagnosis technology has showed its advantages in segmenting complex medical images. We present a new framework based on deep convolutional neural networks (DCNNs) to automatically segment overlapping cells in digital cytology. A double-window based cellular detection method is derived to correctly localize individual cells, in which TernausNet is adopted to classify the image pixels into nucleus, cytoplasm, or background. A modified DeepLab V2 model is applied to perform cytoplasm segmentation. To provide more training samples, a synthesis method is utilized to generate cell masses containing touching or overlapping cells. The presented method was tested on three independent data cohorts, including two public datasets. We achieved improved performance in terms of dice coefficient (DSC), false negative and false positive rates, with up to 15% improvement in DSC, compared with the state-of-the-art approaches. The results indicated that the DCNN based segmentation method could be useful in an image-based computerized analysis system for early detection of cervical cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于是乎完成签到 ,获得积分10
1秒前
122完成签到,获得积分20
1秒前
皮皮龙OVO发布了新的文献求助10
3秒前
邱晓文完成签到 ,获得积分20
5秒前
momo应助干净铭采纳,获得10
6秒前
bkagyin应助魁梧的仰采纳,获得10
6秒前
6秒前
7秒前
8秒前
yexyz完成签到,获得积分10
8秒前
Never stall完成签到,获得积分10
10秒前
zimo完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
从容的狗完成签到 ,获得积分20
14秒前
uuuu发布了新的文献求助10
14秒前
15秒前
小马甲应助学不完了采纳,获得10
16秒前
17秒前
现代姒完成签到,获得积分10
17秒前
ssk完成签到,获得积分10
18秒前
MJ发布了新的文献求助30
18秒前
18秒前
liu完成签到,获得积分10
19秒前
20秒前
彭仲康发布了新的文献求助10
21秒前
22秒前
li发布了新的文献求助10
24秒前
鱼鱼吖发布了新的文献求助10
26秒前
maizencrna完成签到,获得积分10
26秒前
27秒前
无极微光应助学不完了采纳,获得20
27秒前
黄志平完成签到 ,获得积分10
27秒前
29秒前
文艺的真完成签到,获得积分10
31秒前
浣纭完成签到,获得积分20
31秒前
31秒前
32秒前
李娇完成签到 ,获得积分10
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693692
求助须知:如何正确求助?哪些是违规求助? 5093905
关于积分的说明 15212233
捐赠科研通 4850531
什么是DOI,文献DOI怎么找? 2601836
邀请新用户注册赠送积分活动 1553651
关于科研通互助平台的介绍 1511610