VerifyNet: Secure and Verifiable Federated Learning

计算机科学 正确性 可验证秘密共享 云计算 计算机安全 遮罩(插图) 对手 过程(计算) 联合学习 信息隐私 协议(科学) 保密 加密 人工智能 算法 集合(抽象数据类型) 程序设计语言 医学 艺术 替代医学 病理 视觉艺术 操作系统
作者
Guowen Xu,Hongwei Li,Sen Liu,Kan Yang,Xiaodong Lin
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 911-926 被引量:372
标识
DOI:10.1109/tifs.2019.2929409
摘要

As an emerging training model with neural networks, federated learning has received widespread attention due to its ability to update parameters without collecting users' raw data. However, since adversaries can track and derive participants' privacy from the shared gradients, federated learning is still exposed to various security and privacy threats. In this paper, we consider two major issues in the training process over deep neural networks (DNNs): 1) how to protect user's privacy (i.e., local gradients) in the training process and 2) how to verify the integrity (or correctness) of the aggregated results returned from the server. To solve the above problems, several approaches focusing on secure or privacy-preserving federated learning have been proposed and applied in diverse scenarios. However, it is still an open problem enabling clients to verify whether the cloud server is operating correctly, while guaranteeing user's privacy in the training process. In this paper, we propose VerifyNet, the first privacy-preserving and verifiable federated learning framework. In specific, we first propose a double-masking protocol to guarantee the confidentiality of users' local gradients during the federated learning. Then, the cloud server is required to provide the Proof about the correctness of its aggregated results to each user. We claim that it is impossible that an adversary can deceive users by forging Proof, unless it can solve the NP-hard problem adopted in our model. In addition, VerifyNet is also supportive of users dropping out during the training process. The extensive experiments conducted on real-world data also demonstrate the practical performance of our proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCY发布了新的文献求助10
刚刚
Peix完成签到,获得积分10
1秒前
科研通AI2S应助SC采纳,获得10
1秒前
111111完成签到,获得积分10
2秒前
在水一方应助秀丽笑容采纳,获得10
2秒前
丘比特应助yj采纳,获得10
3秒前
orixero应助皮皮的鹿采纳,获得30
7秒前
赖佳晗完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
上官若男应助瓜瓜采纳,获得10
13秒前
33发布了新的文献求助10
13秒前
蚝油盗梨完成签到 ,获得积分10
13秒前
15秒前
wjcjk关注了科研通微信公众号
15秒前
勤奋盼晴发布了新的文献求助10
16秒前
白鱼neko完成签到 ,获得积分10
16秒前
18秒前
19秒前
19秒前
dada发布了新的文献求助10
20秒前
大方马里奥完成签到,获得积分10
20秒前
smottom应助星屑落满天街采纳,获得20
21秒前
草莓发布了新的文献求助10
21秒前
21秒前
冷水发布了新的文献求助30
22秒前
自然的听南完成签到,获得积分10
23秒前
33完成签到,获得积分10
23秒前
高大的易蓉完成签到,获得积分10
23秒前
王贺帅发布了新的文献求助10
25秒前
科研通AI2S应助高大的易蓉采纳,获得10
28秒前
皮皮的鹿发布了新的文献求助30
28秒前
倚栏听风完成签到 ,获得积分10
29秒前
31秒前
李多多完成签到,获得积分10
31秒前
CC完成签到 ,获得积分10
32秒前
34秒前
pan关闭了pan文献求助
34秒前
肖志勇完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495