VerifyNet: Secure and Verifiable Federated Learning

计算机科学 正确性 可验证秘密共享 云计算 计算机安全 遮罩(插图) 对手 过程(计算) 联合学习 信息隐私 协议(科学) 保密 人工智能 算法 集合(抽象数据类型) 程序设计语言 医学 艺术 替代医学 病理 视觉艺术 操作系统
作者
Guowen Xu,Hongwei Li,Sen Liu,Kan Yang,Xiaodong Lin
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 911-926 被引量:709
标识
DOI:10.1109/tifs.2019.2929409
摘要

As an emerging training model with neural networks, federated learning has received widespread attention due to its ability to update parameters without collecting users' raw data. However, since adversaries can track and derive participants' privacy from the shared gradients, federated learning is still exposed to various security and privacy threats. In this paper, we consider two major issues in the training process over deep neural networks (DNNs): 1) how to protect user's privacy (i.e., local gradients) in the training process and 2) how to verify the integrity (or correctness) of the aggregated results returned from the server. To solve the above problems, several approaches focusing on secure or privacy-preserving federated learning have been proposed and applied in diverse scenarios. However, it is still an open problem enabling clients to verify whether the cloud server is operating correctly, while guaranteeing user's privacy in the training process. In this paper, we propose VerifyNet, the first privacy-preserving and verifiable federated learning framework. In specific, we first propose a double-masking protocol to guarantee the confidentiality of users' local gradients during the federated learning. Then, the cloud server is required to provide the Proof about the correctness of its aggregated results to each user. We claim that it is impossible that an adversary can deceive users by forging Proof, unless it can solve the NP-hard problem adopted in our model. In addition, VerifyNet is also supportive of users dropping out during the training process. The extensive experiments conducted on real-world data also demonstrate the practical performance of our proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助nqterysc采纳,获得10
刚刚
BaooooooMao完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
浩气长存完成签到 ,获得积分10
1秒前
arsenal完成签到 ,获得积分10
1秒前
儒雅黑裤完成签到,获得积分10
2秒前
勤奋雨完成签到,获得积分10
3秒前
辛勤谷雪完成签到,获得积分0
3秒前
mumuaidafu完成签到 ,获得积分10
3秒前
《子非鱼》完成签到,获得积分10
4秒前
花白年华哈哈哈完成签到,获得积分10
5秒前
李大王完成签到 ,获得积分10
5秒前
ludong_0完成签到,获得积分10
6秒前
7秒前
辛勤如柏完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
Ava应助科研通管家采纳,获得30
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
大仙完成签到,获得积分10
11秒前
fang完成签到,获得积分10
13秒前
喜凉的采枫完成签到 ,获得积分10
13秒前
钱塘郎中完成签到,获得积分0
14秒前
凶狠的土豆丝完成签到 ,获得积分10
14秒前
日照金峰完成签到,获得积分10
15秒前
LD完成签到 ,获得积分10
15秒前
15秒前
NexusExplorer应助Maestro_S采纳,获得10
16秒前
17秒前
科研通AI6.1应助马成双采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
绵绵完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
wjw发布了新的文献求助10
18秒前
lh完成签到 ,获得积分10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900