VerifyNet: Secure and Verifiable Federated Learning

计算机科学 正确性 可验证秘密共享 云计算 计算机安全 遮罩(插图) 对手 过程(计算) 联合学习 信息隐私 协议(科学) 保密 加密 人工智能 算法 医学 操作系统 艺术 病理 视觉艺术 集合(抽象数据类型) 程序设计语言 替代医学
作者
Guowen Xu,Hongwei Li,Sen Liu,Kan Yang,Xiaodong Lin
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 911-926 被引量:372
标识
DOI:10.1109/tifs.2019.2929409
摘要

As an emerging training model with neural networks, federated learning has received widespread attention due to its ability to update parameters without collecting users' raw data. However, since adversaries can track and derive participants' privacy from the shared gradients, federated learning is still exposed to various security and privacy threats. In this paper, we consider two major issues in the training process over deep neural networks (DNNs): 1) how to protect user's privacy (i.e., local gradients) in the training process and 2) how to verify the integrity (or correctness) of the aggregated results returned from the server. To solve the above problems, several approaches focusing on secure or privacy-preserving federated learning have been proposed and applied in diverse scenarios. However, it is still an open problem enabling clients to verify whether the cloud server is operating correctly, while guaranteeing user's privacy in the training process. In this paper, we propose VerifyNet, the first privacy-preserving and verifiable federated learning framework. In specific, we first propose a double-masking protocol to guarantee the confidentiality of users' local gradients during the federated learning. Then, the cloud server is required to provide the Proof about the correctness of its aggregated results to each user. We claim that it is impossible that an adversary can deceive users by forging Proof, unless it can solve the NP-hard problem adopted in our model. In addition, VerifyNet is also supportive of users dropping out during the training process. The extensive experiments conducted on real-world data also demonstrate the practical performance of our proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阳光青烟完成签到,获得积分10
2秒前
胡关完成签到,获得积分10
2秒前
weiyu_u发布了新的文献求助30
3秒前
Keymo完成签到,获得积分20
4秒前
邱航完成签到,获得积分10
4秒前
邓谷云完成签到,获得积分10
5秒前
糊涂的元珊完成签到 ,获得积分10
5秒前
洁净寒凝完成签到,获得积分10
5秒前
Misaki发布了新的文献求助10
6秒前
wuyongchao完成签到,获得积分20
6秒前
PWG完成签到,获得积分20
7秒前
火箭完成签到,获得积分10
7秒前
勤恳的元绿完成签到,获得积分10
8秒前
科研通AI2S应助青安采纳,获得10
8秒前
dt完成签到,获得积分10
8秒前
子龙完成签到,获得积分10
9秒前
Orange应助奇奇吃面采纳,获得10
9秒前
10秒前
LELE完成签到 ,获得积分10
10秒前
11秒前
Chemistry完成签到,获得积分10
11秒前
WYF完成签到,获得积分20
12秒前
自觉誉完成签到,获得积分10
12秒前
13秒前
si完成签到,获得积分10
13秒前
16秒前
si发布了新的文献求助10
16秒前
高兴的鹤完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
Jim完成签到,获得积分10
18秒前
CipherSage应助四氟乙烯采纳,获得10
19秒前
19秒前
无私尔云完成签到,获得积分10
21秒前
菲菲高完成签到,获得积分10
21秒前
曾会锋发布了新的文献求助10
22秒前
里新发布了新的文献求助30
22秒前
LEOhard完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011