VerifyNet: Secure and Verifiable Federated Learning

计算机科学 正确性 可验证秘密共享 云计算 计算机安全 遮罩(插图) 对手 过程(计算) 联合学习 信息隐私 协议(科学) 保密 加密 人工智能 算法 集合(抽象数据类型) 程序设计语言 医学 艺术 替代医学 病理 视觉艺术 操作系统
作者
Guowen Xu,Hongwei Li,Sen Liu,Kan Yang,Xiaodong Lin
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:15: 911-926 被引量:372
标识
DOI:10.1109/tifs.2019.2929409
摘要

As an emerging training model with neural networks, federated learning has received widespread attention due to its ability to update parameters without collecting users' raw data. However, since adversaries can track and derive participants' privacy from the shared gradients, federated learning is still exposed to various security and privacy threats. In this paper, we consider two major issues in the training process over deep neural networks (DNNs): 1) how to protect user's privacy (i.e., local gradients) in the training process and 2) how to verify the integrity (or correctness) of the aggregated results returned from the server. To solve the above problems, several approaches focusing on secure or privacy-preserving federated learning have been proposed and applied in diverse scenarios. However, it is still an open problem enabling clients to verify whether the cloud server is operating correctly, while guaranteeing user's privacy in the training process. In this paper, we propose VerifyNet, the first privacy-preserving and verifiable federated learning framework. In specific, we first propose a double-masking protocol to guarantee the confidentiality of users' local gradients during the federated learning. Then, the cloud server is required to provide the Proof about the correctness of its aggregated results to each user. We claim that it is impossible that an adversary can deceive users by forging Proof, unless it can solve the NP-hard problem adopted in our model. In addition, VerifyNet is also supportive of users dropping out during the training process. The extensive experiments conducted on real-world data also demonstrate the practical performance of our proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青草蛋糕完成签到 ,获得积分10
刚刚
怡然剑成完成签到,获得积分10
刚刚
刚刚
liyuchen发布了新的文献求助10
1秒前
ipeakkka完成签到,获得积分20
3秒前
马克发布了新的文献求助10
3秒前
赵OO完成签到,获得积分10
3秒前
Yon完成签到 ,获得积分10
4秒前
呆头完成签到,获得积分10
4秒前
科研通AI5应助skier采纳,获得10
5秒前
ywang发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
keyantong完成签到 ,获得积分10
11秒前
booshu完成签到,获得积分10
12秒前
jy发布了新的文献求助10
13秒前
朴斓完成签到,获得积分10
13秒前
科研通AI5应助魏伯安采纳,获得10
16秒前
哈密哈密完成签到,获得积分10
16秒前
16秒前
Ava应助浪迹天涯采纳,获得10
16秒前
17秒前
安南发布了新的文献求助10
17秒前
18秒前
healthy完成签到 ,获得积分10
18秒前
19秒前
刘大可完成签到,获得积分10
19秒前
22秒前
su发布了新的文献求助10
22秒前
rookie发布了新的文献求助10
23秒前
方勇飞发布了新的文献求助10
24秒前
郭菱香完成签到 ,获得积分20
24秒前
皮念寒完成签到,获得积分10
24秒前
顺其自然_666888完成签到,获得积分10
24秒前
25秒前
向上的小v完成签到 ,获得积分10
26秒前
26秒前
28秒前
酷酷紫蓝完成签到 ,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824