Leveraging Online Word of Mouth for Personalized App Recommendation

计算机科学 推荐系统 人气 移动应用程序 万维网 任务(项目管理) 应用商店 移动设备 情报检索 工程类 心理学 社会心理学 系统工程
作者
Keng‐Pei Lin,Yi-Wei Chang,Chih-Ya Shen,Mei-Chu Lin
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:5 (4): 1061-1070 被引量:22
标识
DOI:10.1109/tcss.2018.2878866
摘要

The popularity and development of mobile devices and mobile apps have dramatically changed human life. Due to the tremendous and still rapidly growing number of mobile apps, helping users find apps that satisfy their demands remains a difficult task. To address this problem, we propose a personalized mobile app recommender system based on the textual data of user reviews on the app store. Topic modeling techniques are applied to extract hidden topics of user reviews, and the probability distributions of the topics are utilized to represent the features of the apps. Then, the user profile is constructed based on the user's installed apps to capture user preferences. Both the topic distributions of the apps and user preferences are taken into account to produce recommendation scores to generate recommendation lists for target users. We crawl real-world data sets from app stores to evaluate the performance. The experimental results show that user reviews are effective for deriving the features of apps, and the proposed user-review-based app recommender system improves the performance of existing approaches. We conclude that the user reviews on the app store effectively represent the features of apps and play a significant role in personalized app recommender systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动大神关注了科研通微信公众号
1秒前
天天快乐应助12312采纳,获得30
2秒前
Mic完成签到,获得积分10
2秒前
U9A发布了新的文献求助20
2秒前
医学牲完成签到,获得积分10
3秒前
琉璃929发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
啦啦啦啦完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
9秒前
66发布了新的文献求助20
11秒前
麦乐迪应助医学牲采纳,获得10
11秒前
一叶舟完成签到,获得积分10
12秒前
12秒前
12秒前
14秒前
生动大神发布了新的文献求助10
15秒前
15秒前
16秒前
充电宝应助梓歆采纳,获得10
17秒前
稳重的若雁完成签到,获得积分10
18秒前
周研发布了新的文献求助10
18秒前
研友_VZG7GZ应助饼藏采纳,获得10
19秒前
JamesPei应助机灵水卉采纳,获得10
19秒前
不要加糖发布了新的文献求助10
19秒前
怕孤独的鹭洋完成签到,获得积分10
19秒前
科研通AI2S应助qiang采纳,获得10
20秒前
雪酪芋泥球完成签到 ,获得积分10
20秒前
21秒前
23秒前
专炸油条完成签到 ,获得积分10
23秒前
24秒前
NexusExplorer应助vexille采纳,获得20
25秒前
青梨完成签到 ,获得积分10
27秒前
da_line应助U9A采纳,获得10
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578