卡尔曼滤波器
全球导航卫星系统应用
扩展卡尔曼滤波器
快速卡尔曼滤波
不变扩展卡尔曼滤波器
计算机科学
α-β滤光片
控制理论(社会学)
集合卡尔曼滤波器
全球定位系统
电信
人工智能
控制(管理)
移动视界估计
作者
Yufu Guo,Senchun Chai,Lingguo Cui
标识
DOI:10.23919/chicc.2018.8484219
摘要
This paper addresses the Kalman filter divergence problem for Global Navigation Satellite System (GNSS) in Precise Point Positioning (PPP). Continuous improvement of precision of GNSS PPP makes it widely used in various fields, however the Kalman filter divergence resolutions for PPP signal attenuating and satellite missing condition are still insufficient. Kalman filter is a recursive, linear unbiased, minimum variance method. Compared with the standard Kalman filter, the dynamic Kalman filter with attenuation factor in this paper makes up for the Kalman filter divergence problem. The effectiveness of dynamic Kalman Filter is demonstrated via matlab simulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI