Integrating Multifaceted Information to Predict Mycobacterium tuberculosis-Human Protein-Protein Interactions

结核分枝杆菌 蛋白质-蛋白质相互作用 计算生物学 肺结核 细菌蛋白 生物 医学 细菌 遗传学 病理
作者
Jun Sun,Lingli Yang,Xi Chen,Kong De,Rong Liu
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:17 (11): 3810-3823 被引量:9
标识
DOI:10.1021/acs.jproteome.8b00497
摘要

Tuberculosis (TB) is one of the biggest infectious disease killers caused by Mycobacterium tuberculosis (MTB). Studying the protein-protein interactions (PPIs) between MTB and human can deepen our understanding of the pathogenesis of TB and offer new clues to the treatment against MTB infection, but the experimentally validated interactions are especially scarce in this regard. Herein we proposed an integrated framework that combined template-, domain-domain interaction-, and machine learning-based methods to predict MTB-human PPIs. As a result, we established a network composed of 13 758 PPIs including 451 MTB proteins and 3167 human proteins ( http://liulab.hzau.edu.cn/MTB/ ). Compared to known human targets of various pathogens, our predicted human targets show a similar tendency in terms of the network topological properties and enrichment in important functional genes. Additionally, these human targets largely have longer sequence lengths, more protein domains, more disordered residues, lower evolutionary rates, and older protein ages. Functional analysis demonstrates that these proteins show strong preferences toward the phosphorylation, kinase activity, and signaling transduction processes and the disease and immune related pathways. Dissecting the cross-talk among top-ranked pathways suggests that the cancer pathway may serve as a bridge in MTB infection. Triplet analysis illustrates that the paired targets interacting with the same partner are adjacent to each other in the intraspecies network and tend to share similar expression patterns. Finally, we identified 36 potential anti-MTB human targets by integrating known drug target information and molecular properties of proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助小王采纳,获得10
1秒前
1秒前
sl完成签到,获得积分10
1秒前
CC完成签到,获得积分10
2秒前
自信松思完成签到 ,获得积分10
3秒前
荣枫完成签到,获得积分10
3秒前
3秒前
火火火木完成签到 ,获得积分10
4秒前
大模型应助妖孽宇采纳,获得10
4秒前
6秒前
积极行天发布了新的文献求助50
6秒前
受伤凌蝶发布了新的文献求助10
9秒前
fusucheng完成签到,获得积分10
10秒前
koi完成签到,获得积分20
10秒前
10秒前
聪明摩托完成签到,获得积分10
10秒前
阿纯完成签到,获得积分10
11秒前
12秒前
肱二头肌完成签到,获得积分10
13秒前
14秒前
小王发布了新的文献求助10
14秒前
多情自古空余恨完成签到,获得积分10
15秒前
Qionglin完成签到,获得积分10
17秒前
Bao完成签到 ,获得积分10
18秒前
18秒前
初夏微凉发布了新的文献求助30
18秒前
19秒前
书霂完成签到,获得积分10
19秒前
优秀含羞草完成签到,获得积分10
20秒前
宓沂完成签到,获得积分10
20秒前
vivre223完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
受伤凌蝶完成签到,获得积分10
22秒前
wenjiejiang完成签到,获得积分10
23秒前
23秒前
zly完成签到 ,获得积分10
24秒前
24秒前
李某人完成签到,获得积分10
24秒前
25秒前
小鱼完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029