Integrating Multifaceted Information to Predict Mycobacterium tuberculosis-Human Protein-Protein Interactions

结核分枝杆菌 蛋白质-蛋白质相互作用 计算生物学 肺结核 细菌蛋白 生物 医学 细菌 遗传学 病理
作者
Jun Sun,Lingli Yang,Xi Chen,Kong De,Rong Liu
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:17 (11): 3810-3823 被引量:9
标识
DOI:10.1021/acs.jproteome.8b00497
摘要

Tuberculosis (TB) is one of the biggest infectious disease killers caused by Mycobacterium tuberculosis (MTB). Studying the protein-protein interactions (PPIs) between MTB and human can deepen our understanding of the pathogenesis of TB and offer new clues to the treatment against MTB infection, but the experimentally validated interactions are especially scarce in this regard. Herein we proposed an integrated framework that combined template-, domain-domain interaction-, and machine learning-based methods to predict MTB-human PPIs. As a result, we established a network composed of 13 758 PPIs including 451 MTB proteins and 3167 human proteins ( http://liulab.hzau.edu.cn/MTB/ ). Compared to known human targets of various pathogens, our predicted human targets show a similar tendency in terms of the network topological properties and enrichment in important functional genes. Additionally, these human targets largely have longer sequence lengths, more protein domains, more disordered residues, lower evolutionary rates, and older protein ages. Functional analysis demonstrates that these proteins show strong preferences toward the phosphorylation, kinase activity, and signaling transduction processes and the disease and immune related pathways. Dissecting the cross-talk among top-ranked pathways suggests that the cancer pathway may serve as a bridge in MTB infection. Triplet analysis illustrates that the paired targets interacting with the same partner are adjacent to each other in the intraspecies network and tend to share similar expression patterns. Finally, we identified 36 potential anti-MTB human targets by integrating known drug target information and molecular properties of proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助xiaoli采纳,获得10
刚刚
哎呦喂发布了新的文献求助10
1秒前
1秒前
大海发布了新的文献求助10
1秒前
FashionBoy应助PANDA采纳,获得10
2秒前
2秒前
2秒前
paparazzi221发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助再睡十分钟采纳,获得10
2秒前
一往如常发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
957发布了新的文献求助10
7秒前
莞莞类卿完成签到,获得积分10
7秒前
你怎么讨厌完成签到,获得积分10
7秒前
文艺的碧曼完成签到,获得积分20
7秒前
7秒前
8秒前
落霞完成签到,获得积分10
8秒前
paparazzi221完成签到,获得积分0
9秒前
香蕉觅云应助啦啦啦采纳,获得10
9秒前
顺心冬瓜完成签到,获得积分20
9秒前
顺利毕业发布了新的文献求助10
10秒前
10秒前
11秒前
平淡的数据线完成签到,获得积分10
13秒前
FashionBoy应助sunny采纳,获得10
13秒前
13秒前
科研dog完成签到,获得积分10
14秒前
乐观小蕊发布了新的文献求助10
14秒前
shenghaowen发布了新的文献求助10
15秒前
星辰大海应助冷酷的雁菡采纳,获得10
15秒前
姜小米完成签到,获得积分10
15秒前
燕知南完成签到,获得积分10
16秒前
周周以以完成签到,获得积分10
16秒前
ljw完成签到,获得积分20
17秒前
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123185
求助须知:如何正确求助?哪些是违规求助? 2773671
关于积分的说明 7719164
捐赠科研通 2429389
什么是DOI,文献DOI怎么找? 1290277
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251