Byte Segment Neural Network for Network Traffic Classification

数据报 计算机科学 计算机网络 用户数据报协议 Internet控制消息协议 字节 交通分类 数据挖掘 服务质量 Internet协议套件 互联网 操作系统 网络数据包
作者
Rui Li,Xi Xiao,Shiguang Ni,Hai-Tao Zheng,Shu‐Tao Xia
标识
DOI:10.1109/iwqos.2018.8624128
摘要

Network traffic classification, which can map network traffic to protocols in the application layer, is a fundamental technique for network management and security issues such as Quality of Service, network measurement, and network monitoring. Recent researchers focus on extracting features for traditional machine learning methods from flows or datagrams of the specific protocol. However, as the rapid growth of network applications, previous works cannot handle complex novel protocols well. In this paper, we introduce the recurrent neural network to network traffic classification and design a novel neural network, the Byte Segment Neural Network (BSNN). BSNN treats network datagrams as input and gives the classification results directly. In BSNN, a datagram is firstly broken into serval byte segments. Then, these segments are fed to encoders which are based on the recurrent neural network. The information extracted by encoders is combined to a representation vector of the whole datagram. Finally, we apply the softmax function to use this vector for predicting the application protocol of this datagram. There are several key advantages of BSNN: 1) no need for prior knowledge of target applications; 2) can handle both connection-oriented protocols and connection-less protocols; 3) supports multi-classification for protocols; 4) shows outstanding accuracy in both traditional protocols and complex novel protocols. Our thorough experiments on real-world data with different protocols indicate that BSNN gains average F1-measure about 95.82% in multi-classification for five protocols including QQ, PPLive, DNS, 360 and BitTorrent. And it also shows excellent performance for detection of novel protocols. Furthermore, compared with two recent state-of-the-art works, BSNN has superiority over the traditional machine learning-based method and the packet inspection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
时尚语梦完成签到 ,获得积分10
4秒前
诸葛半雪完成签到,获得积分10
7秒前
爆米花应助安陌煜采纳,获得10
7秒前
田田发布了新的文献求助10
7秒前
顾矜应助HEIGE采纳,获得30
7秒前
7秒前
萌3690完成签到,获得积分10
8秒前
爆米花应助丹尼耳背采纳,获得20
8秒前
11秒前
打打应助小盘子采纳,获得10
12秒前
12秒前
小庄完成签到 ,获得积分10
13秒前
小蘑菇应助阿末采纳,获得10
13秒前
16秒前
16秒前
vspill发布了新的文献求助10
16秒前
18秒前
hzx发布了新的文献求助10
18秒前
yueqin发布了新的文献求助10
20秒前
酷炫的迎天完成签到,获得积分10
22秒前
Akim应助聪明牛排采纳,获得20
22秒前
理想三寻发布了新的文献求助30
22秒前
23秒前
大宝S欧D蜜完成签到,获得积分10
23秒前
ark861023发布了新的文献求助10
26秒前
咩咩羊发布了新的文献求助20
31秒前
zj完成签到,获得积分10
31秒前
37秒前
InfoNinja应助hzx采纳,获得30
38秒前
40秒前
半只兔子发布了新的文献求助10
41秒前
春天发布了新的文献求助10
43秒前
陨落星辰完成签到 ,获得积分10
45秒前
cnkly完成签到,获得积分10
47秒前
研友_8R7b2L完成签到,获得积分10
50秒前
50秒前
z_完成签到,获得积分10
50秒前
科研小白完成签到,获得积分10
51秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012