清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Byte Segment Neural Network for Network Traffic Classification

数据报 计算机科学 计算机网络 用户数据报协议 Internet控制消息协议 字节 交通分类 数据挖掘 服务质量 Internet协议套件 互联网 操作系统 网络数据包
作者
Rui Li,Xi Xiao,Shiguang Ni,Hai-Tao Zheng,Shu‐Tao Xia
标识
DOI:10.1109/iwqos.2018.8624128
摘要

Network traffic classification, which can map network traffic to protocols in the application layer, is a fundamental technique for network management and security issues such as Quality of Service, network measurement, and network monitoring. Recent researchers focus on extracting features for traditional machine learning methods from flows or datagrams of the specific protocol. However, as the rapid growth of network applications, previous works cannot handle complex novel protocols well. In this paper, we introduce the recurrent neural network to network traffic classification and design a novel neural network, the Byte Segment Neural Network (BSNN). BSNN treats network datagrams as input and gives the classification results directly. In BSNN, a datagram is firstly broken into serval byte segments. Then, these segments are fed to encoders which are based on the recurrent neural network. The information extracted by encoders is combined to a representation vector of the whole datagram. Finally, we apply the softmax function to use this vector for predicting the application protocol of this datagram. There are several key advantages of BSNN: 1) no need for prior knowledge of target applications; 2) can handle both connection-oriented protocols and connection-less protocols; 3) supports multi-classification for protocols; 4) shows outstanding accuracy in both traditional protocols and complex novel protocols. Our thorough experiments on real-world data with different protocols indicate that BSNN gains average F1-measure about 95.82% in multi-classification for five protocols including QQ, PPLive, DNS, 360 and BitTorrent. And it also shows excellent performance for detection of novel protocols. Furthermore, compared with two recent state-of-the-art works, BSNN has superiority over the traditional machine learning-based method and the packet inspection method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
酷酷海豚完成签到,获得积分10
36秒前
mengliu完成签到,获得积分0
57秒前
1分钟前
cr发布了新的文献求助10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
dream完成签到 ,获得积分10
1分钟前
2分钟前
琳io完成签到 ,获得积分10
2分钟前
laohei94_6完成签到 ,获得积分10
2分钟前
2分钟前
无花果应助紫色奶萨采纳,获得10
2分钟前
2分钟前
科研通AI2S应助arsenal采纳,获得10
2分钟前
狂野宛凝发布了新的文献求助10
2分钟前
2分钟前
光亮静槐完成签到 ,获得积分10
2分钟前
Echopotter发布了新的文献求助10
2分钟前
紫色奶萨发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Echopotter完成签到,获得积分10
3分钟前
3分钟前
Jenny发布了新的文献求助30
3分钟前
liwen发布了新的文献求助100
3分钟前
3分钟前
科研通AI2S应助ceeray23采纳,获得20
3分钟前
斯提亚拉发布了新的文献求助10
3分钟前
牛黄完成签到 ,获得积分10
3分钟前
Orange应助科研通管家采纳,获得20
3分钟前
量子星尘发布了新的文献求助10
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
ceeray23发布了新的文献求助30
4分钟前
4分钟前
袁青寒发布了新的文献求助10
4分钟前
zxq完成签到 ,获得积分10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
lucky完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503