Byte Segment Neural Network for Network Traffic Classification

数据报 计算机科学 计算机网络 用户数据报协议 Internet控制消息协议 字节 交通分类 数据挖掘 服务质量 Internet协议套件 互联网 操作系统 网络数据包
作者
Rui Li,Xi Xiao,Shiguang Ni,Hai-Tao Zheng,Shu‐Tao Xia
标识
DOI:10.1109/iwqos.2018.8624128
摘要

Network traffic classification, which can map network traffic to protocols in the application layer, is a fundamental technique for network management and security issues such as Quality of Service, network measurement, and network monitoring. Recent researchers focus on extracting features for traditional machine learning methods from flows or datagrams of the specific protocol. However, as the rapid growth of network applications, previous works cannot handle complex novel protocols well. In this paper, we introduce the recurrent neural network to network traffic classification and design a novel neural network, the Byte Segment Neural Network (BSNN). BSNN treats network datagrams as input and gives the classification results directly. In BSNN, a datagram is firstly broken into serval byte segments. Then, these segments are fed to encoders which are based on the recurrent neural network. The information extracted by encoders is combined to a representation vector of the whole datagram. Finally, we apply the softmax function to use this vector for predicting the application protocol of this datagram. There are several key advantages of BSNN: 1) no need for prior knowledge of target applications; 2) can handle both connection-oriented protocols and connection-less protocols; 3) supports multi-classification for protocols; 4) shows outstanding accuracy in both traditional protocols and complex novel protocols. Our thorough experiments on real-world data with different protocols indicate that BSNN gains average F1-measure about 95.82% in multi-classification for five protocols including QQ, PPLive, DNS, 360 and BitTorrent. And it also shows excellent performance for detection of novel protocols. Furthermore, compared with two recent state-of-the-art works, BSNN has superiority over the traditional machine learning-based method and the packet inspection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gauss应助清风采纳,获得30
刚刚
你我的共同完成签到 ,获得积分10
1秒前
酱啊油发布了新的文献求助10
1秒前
丙烯酸树脂完成签到,获得积分10
2秒前
BB完成签到,获得积分10
2秒前
坦率的匪应助静仰星空采纳,获得10
3秒前
3秒前
actor2006完成签到,获得积分10
4秒前
zhaxiao完成签到,获得积分10
4秒前
4秒前
希望天下0贩的0应助淘淘采纳,获得10
4秒前
冰火油条虾完成签到,获得积分10
4秒前
陈逸恒发布了新的文献求助10
4秒前
大红完成签到,获得积分10
4秒前
爆米花应助应天亦采纳,获得10
5秒前
善学以致用应助echooooo采纳,获得10
5秒前
墨卿完成签到,获得积分10
5秒前
uraylong发布了新的文献求助10
6秒前
7秒前
达达利亚完成签到,获得积分10
7秒前
111发布了新的文献求助30
7秒前
ponytail完成签到,获得积分10
8秒前
榕小蜂完成签到 ,获得积分10
8秒前
8秒前
9秒前
wdy111应助Mila采纳,获得20
9秒前
hahhh7发布了新的文献求助10
9秒前
9秒前
科研通AI5应助huyuan采纳,获得10
10秒前
冰西瓜完成签到 ,获得积分0
10秒前
酱啊油完成签到,获得积分10
10秒前
charles发布了新的文献求助10
12秒前
LYL2003完成签到,获得积分10
12秒前
1231完成签到,获得积分10
12秒前
13秒前
大气的天蓝完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
白鸢发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653