Byte Segment Neural Network for Network Traffic Classification

数据报 计算机科学 计算机网络 用户数据报协议 Internet控制消息协议 字节 交通分类 数据挖掘 服务质量 Internet协议套件 互联网 操作系统 网络数据包
作者
Rui Li,Xi Xiao,Shiguang Ni,Hai-Tao Zheng,Shu‐Tao Xia
标识
DOI:10.1109/iwqos.2018.8624128
摘要

Network traffic classification, which can map network traffic to protocols in the application layer, is a fundamental technique for network management and security issues such as Quality of Service, network measurement, and network monitoring. Recent researchers focus on extracting features for traditional machine learning methods from flows or datagrams of the specific protocol. However, as the rapid growth of network applications, previous works cannot handle complex novel protocols well. In this paper, we introduce the recurrent neural network to network traffic classification and design a novel neural network, the Byte Segment Neural Network (BSNN). BSNN treats network datagrams as input and gives the classification results directly. In BSNN, a datagram is firstly broken into serval byte segments. Then, these segments are fed to encoders which are based on the recurrent neural network. The information extracted by encoders is combined to a representation vector of the whole datagram. Finally, we apply the softmax function to use this vector for predicting the application protocol of this datagram. There are several key advantages of BSNN: 1) no need for prior knowledge of target applications; 2) can handle both connection-oriented protocols and connection-less protocols; 3) supports multi-classification for protocols; 4) shows outstanding accuracy in both traditional protocols and complex novel protocols. Our thorough experiments on real-world data with different protocols indicate that BSNN gains average F1-measure about 95.82% in multi-classification for five protocols including QQ, PPLive, DNS, 360 and BitTorrent. And it also shows excellent performance for detection of novel protocols. Furthermore, compared with two recent state-of-the-art works, BSNN has superiority over the traditional machine learning-based method and the packet inspection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助stt采纳,获得10
1秒前
123完成签到 ,获得积分10
4秒前
坚定的泥猴桃完成签到 ,获得积分10
5秒前
5秒前
同學你該吃藥了完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
8秒前
xvping完成签到,获得积分10
8秒前
9秒前
斯文败类应助闪闪落雁采纳,获得10
9秒前
9秒前
朴素炎彬完成签到,获得积分20
10秒前
汉堡包应助兀那狗子别跑采纳,获得10
10秒前
执着冷雁发布了新的文献求助10
11秒前
syp发布了新的文献求助10
12秒前
泡泡完成签到 ,获得积分10
12秒前
12秒前
orixero应助唐tang采纳,获得10
13秒前
含蓄的敏发布了新的文献求助10
13秒前
充电宝应助发文章12138采纳,获得10
13秒前
xiaoxiao发布了新的文献求助10
13秒前
包容煎饼发布了新的文献求助10
14秒前
卷王完成签到,获得积分10
14秒前
16秒前
荷包蛋发布了新的文献求助20
17秒前
HR112发布了新的文献求助10
18秒前
19秒前
dididi完成签到,获得积分10
19秒前
19秒前
19秒前
pluto应助超级的鞅采纳,获得10
20秒前
mingyahaoa完成签到 ,获得积分10
20秒前
深情安青应助syp采纳,获得10
20秒前
cc完成签到 ,获得积分10
20秒前
20秒前
柔弱嵩发布了新的文献求助10
21秒前
21秒前
jgtrd完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300240
求助须知:如何正确求助?哪些是违规求助? 4448171
关于积分的说明 13845185
捐赠科研通 4333829
什么是DOI,文献DOI怎么找? 2379156
邀请新用户注册赠送积分活动 1374314
关于科研通互助平台的介绍 1339962