Byte Segment Neural Network for Network Traffic Classification

数据报 计算机科学 计算机网络 用户数据报协议 Internet控制消息协议 字节 交通分类 数据挖掘 服务质量 Internet协议套件 互联网 操作系统 网络数据包
作者
Rui Li,Xi Xiao,Shiguang Ni,Hai-Tao Zheng,Shu‐Tao Xia
标识
DOI:10.1109/iwqos.2018.8624128
摘要

Network traffic classification, which can map network traffic to protocols in the application layer, is a fundamental technique for network management and security issues such as Quality of Service, network measurement, and network monitoring. Recent researchers focus on extracting features for traditional machine learning methods from flows or datagrams of the specific protocol. However, as the rapid growth of network applications, previous works cannot handle complex novel protocols well. In this paper, we introduce the recurrent neural network to network traffic classification and design a novel neural network, the Byte Segment Neural Network (BSNN). BSNN treats network datagrams as input and gives the classification results directly. In BSNN, a datagram is firstly broken into serval byte segments. Then, these segments are fed to encoders which are based on the recurrent neural network. The information extracted by encoders is combined to a representation vector of the whole datagram. Finally, we apply the softmax function to use this vector for predicting the application protocol of this datagram. There are several key advantages of BSNN: 1) no need for prior knowledge of target applications; 2) can handle both connection-oriented protocols and connection-less protocols; 3) supports multi-classification for protocols; 4) shows outstanding accuracy in both traditional protocols and complex novel protocols. Our thorough experiments on real-world data with different protocols indicate that BSNN gains average F1-measure about 95.82% in multi-classification for five protocols including QQ, PPLive, DNS, 360 and BitTorrent. And it also shows excellent performance for detection of novel protocols. Furthermore, compared with two recent state-of-the-art works, BSNN has superiority over the traditional machine learning-based method and the packet inspection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happyday发布了新的文献求助10
3秒前
4秒前
芃芃完成签到 ,获得积分10
6秒前
7秒前
诺诺完成签到 ,获得积分10
10秒前
11秒前
aaaa完成签到 ,获得积分10
12秒前
mont完成签到,获得积分10
13秒前
13秒前
123456789完成签到 ,获得积分10
13秒前
13秒前
16秒前
杨震发布了新的文献求助10
16秒前
17秒前
mont发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
科研通AI6应助柔弱的芷珍采纳,获得10
20秒前
21秒前
21秒前
暗中讨饭发布了新的文献求助10
21秒前
21秒前
chao发布了新的文献求助10
22秒前
晶婷发布了新的文献求助10
23秒前
杨震完成签到,获得积分10
25秒前
大方蜡烛发布了新的文献求助10
25秒前
奋斗青发布了新的文献求助10
27秒前
27秒前
28秒前
zhangxiaodan发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
明白放弃发布了新的文献求助10
35秒前
chao完成签到,获得积分10
35秒前
sia完成签到 ,获得积分10
39秒前
李健应助吃饭了吗123采纳,获得10
42秒前
小马甲应助明白放弃采纳,获得10
47秒前
不可以哦完成签到 ,获得积分10
47秒前
48秒前
48秒前
大方蜡烛完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439