亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Byte Segment Neural Network for Network Traffic Classification

数据报 计算机科学 计算机网络 用户数据报协议 Internet控制消息协议 字节 交通分类 数据挖掘 服务质量 Internet协议套件 互联网 操作系统 网络数据包
作者
Rui Li,Xi Xiao,Shiguang Ni,Hai-Tao Zheng,Shu‐Tao Xia
标识
DOI:10.1109/iwqos.2018.8624128
摘要

Network traffic classification, which can map network traffic to protocols in the application layer, is a fundamental technique for network management and security issues such as Quality of Service, network measurement, and network monitoring. Recent researchers focus on extracting features for traditional machine learning methods from flows or datagrams of the specific protocol. However, as the rapid growth of network applications, previous works cannot handle complex novel protocols well. In this paper, we introduce the recurrent neural network to network traffic classification and design a novel neural network, the Byte Segment Neural Network (BSNN). BSNN treats network datagrams as input and gives the classification results directly. In BSNN, a datagram is firstly broken into serval byte segments. Then, these segments are fed to encoders which are based on the recurrent neural network. The information extracted by encoders is combined to a representation vector of the whole datagram. Finally, we apply the softmax function to use this vector for predicting the application protocol of this datagram. There are several key advantages of BSNN: 1) no need for prior knowledge of target applications; 2) can handle both connection-oriented protocols and connection-less protocols; 3) supports multi-classification for protocols; 4) shows outstanding accuracy in both traditional protocols and complex novel protocols. Our thorough experiments on real-world data with different protocols indicate that BSNN gains average F1-measure about 95.82% in multi-classification for five protocols including QQ, PPLive, DNS, 360 and BitTorrent. And it also shows excellent performance for detection of novel protocols. Furthermore, compared with two recent state-of-the-art works, BSNN has superiority over the traditional machine learning-based method and the packet inspection method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz完成签到 ,获得积分10
1秒前
4秒前
6秒前
张晓芮完成签到 ,获得积分10
7秒前
赘婿应助宇宙超人007008采纳,获得10
9秒前
18秒前
怡然剑成完成签到 ,获得积分10
22秒前
23秒前
24秒前
25秒前
26秒前
科研通AI6应助科研通管家采纳,获得20
26秒前
Claire_Xiang应助科研通管家采纳,获得10
26秒前
26秒前
beifa发布了新的文献求助10
28秒前
shinn发布了新的文献求助10
30秒前
31秒前
努力的淼淼完成签到 ,获得积分10
32秒前
33秒前
彭于晏应助beifa采纳,获得10
33秒前
流觞完成签到 ,获得积分10
34秒前
36秒前
小年小少发布了新的文献求助10
37秒前
Yoga发布了新的文献求助10
39秒前
科研通AI2S应助yyy采纳,获得10
41秒前
何木完成签到 ,获得积分10
42秒前
酷波er应助小年小少采纳,获得10
44秒前
Orange应助Yoga采纳,获得10
46秒前
47秒前
yyy发布了新的文献求助10
52秒前
53秒前
57秒前
1分钟前
1分钟前
西湖醋鱼完成签到,获得积分10
1分钟前
1分钟前
淡淡元蝶完成签到 ,获得积分10
1分钟前
大黄蜂发布了新的文献求助30
1分钟前
beifa发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772365
求助须知:如何正确求助?哪些是违规求助? 5597951
关于积分的说明 15429577
捐赠科研通 4905375
什么是DOI,文献DOI怎么找? 2639348
邀请新用户注册赠送积分活动 1587287
关于科研通互助平台的介绍 1542124