Byte Segment Neural Network for Network Traffic Classification

数据报 计算机科学 计算机网络 用户数据报协议 Internet控制消息协议 字节 交通分类 数据挖掘 服务质量 Internet协议套件 互联网 操作系统 网络数据包
作者
Rui Li,Xi Xiao,Shiguang Ni,Hai-Tao Zheng,Shu‐Tao Xia
标识
DOI:10.1109/iwqos.2018.8624128
摘要

Network traffic classification, which can map network traffic to protocols in the application layer, is a fundamental technique for network management and security issues such as Quality of Service, network measurement, and network monitoring. Recent researchers focus on extracting features for traditional machine learning methods from flows or datagrams of the specific protocol. However, as the rapid growth of network applications, previous works cannot handle complex novel protocols well. In this paper, we introduce the recurrent neural network to network traffic classification and design a novel neural network, the Byte Segment Neural Network (BSNN). BSNN treats network datagrams as input and gives the classification results directly. In BSNN, a datagram is firstly broken into serval byte segments. Then, these segments are fed to encoders which are based on the recurrent neural network. The information extracted by encoders is combined to a representation vector of the whole datagram. Finally, we apply the softmax function to use this vector for predicting the application protocol of this datagram. There are several key advantages of BSNN: 1) no need for prior knowledge of target applications; 2) can handle both connection-oriented protocols and connection-less protocols; 3) supports multi-classification for protocols; 4) shows outstanding accuracy in both traditional protocols and complex novel protocols. Our thorough experiments on real-world data with different protocols indicate that BSNN gains average F1-measure about 95.82% in multi-classification for five protocols including QQ, PPLive, DNS, 360 and BitTorrent. And it also shows excellent performance for detection of novel protocols. Furthermore, compared with two recent state-of-the-art works, BSNN has superiority over the traditional machine learning-based method and the packet inspection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
狂野绿竹完成签到,获得积分10
1秒前
11完成签到,获得积分10
1秒前
1秒前
hoongyan完成签到 ,获得积分10
3秒前
3秒前
侯笑笑发布了新的文献求助30
3秒前
孙行行完成签到,获得积分10
4秒前
洁净山灵完成签到,获得积分10
4秒前
科研通AI6应助hersy采纳,获得10
4秒前
可积完成签到,获得积分10
4秒前
4秒前
5秒前
znsmaqwdy完成签到,获得积分10
5秒前
Owen应助zsy采纳,获得10
6秒前
6秒前
田様应助端庄书雁采纳,获得10
6秒前
甜蜜不悔完成签到,获得积分10
6秒前
7秒前
顾矜应助西木采纳,获得10
7秒前
我是老大应助save采纳,获得10
7秒前
冷傲的人雄完成签到,获得积分10
7秒前
华仔应助YY采纳,获得10
7秒前
mouxq发布了新的文献求助10
8秒前
汉堡包应助包包琪采纳,获得10
8秒前
甜美鬼神发布了新的文献求助10
8秒前
55完成签到,获得积分10
8秒前
wanci应助XHH1994采纳,获得10
9秒前
英姑应助动听的店员采纳,获得10
10秒前
CCCZH发布了新的文献求助10
10秒前
11秒前
12秒前
起朱楼完成签到,获得积分10
12秒前
自信璎发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
hyominhsu完成签到,获得积分10
13秒前
852应助笑点低的碧琴采纳,获得10
13秒前
14秒前
嘿哈发布了新的文献求助10
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709