An approximate dynamic programming approach for solving an air combat maneuvering problem

马尔可夫决策过程 计算机科学 空战 对手 水准点(测量) 航程(航空) 过程(计算) 无人机 动态规划 对抗制 功能(生物学) 人工智能 数学优化 马尔可夫过程 模拟 计算机安全 工程类 算法 数学 地理 进化生物学 统计 航空航天工程 操作系统 生物 遗传学 大地测量学
作者
James B. Crumpacker,Matthew J. Robbins,Phillip R. Jenkins
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:203: 117448-117448 被引量:11
标识
DOI:10.1016/j.eswa.2022.117448
摘要

Within visual range air combat involves execution of highly complex and dynamic activities, requiring rapid, sequential decision-making to achieve success. Fighter pilots spend years perfecting tactics and maneuvers for these types of combat engagements, yet the ongoing emergence of unmanned, autonomous vehicle technologies elicits a natural question — can an autonomous unmanned combat aerial vehicle (AUCAV) be imbued with the necessary artificial intelligence to perform challenging air combat maneuvering tasks independently? We formulate and solve the air combat maneuvering problem (ACMP) to examine this important question, developing a Markov decision process (MDP) model to control a defending AUCAV seeking to destroy an attacking adversarial vehicle. The MDP model includes a 5-degree-of-freedom, point-mass aircraft state transition model to accurately represent both kinematics and energy while maneuvering. An approximate dynamic programming (ADP) approach is proposed wherein we develop and test an approximate policy iteration algorithm that implements value function approximation via neural network regression to attain high-quality maneuver policies for the AUCAV. A representative intercept scenario is specified for testing purposes wherein the AUCAV must engage and destroy an adversary aircraft attempting to penetrate the defended airspace. Several designed experiments are conducted to determine how aircraft velocity and adversary maneuvering tactics impact the efficacy of the proposed ADP solution approach and to enable efficient algorithm parameter tuning. ADP-generated policies are compared to two benchmark maneuver policies constructed from two reward shaping functions found in the ACMP literature, attaining improved mean probabilities of kill for 24 of 36 air combat situations considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gk完成签到,获得积分20
刚刚
刚刚
1秒前
核桃应助slowfloat采纳,获得20
1秒前
JamesPei应助B站萧亚轩采纳,获得10
2秒前
搞怪雁风完成签到,获得积分10
2秒前
刘茗元发布了新的文献求助20
2秒前
2秒前
2秒前
2秒前
3秒前
上官若男应助wzc采纳,获得10
4秒前
arzw完成签到,获得积分10
4秒前
传统的妖妖完成签到,获得积分20
6秒前
脑洞疼应助why采纳,获得10
6秒前
搞怪雁风发布了新的文献求助10
7秒前
江湖护卫舰应助zzyluckyzoe采纳,获得10
7秒前
一叶知秋应助杜晓雯采纳,获得10
7秒前
科研通AI5应助凌兰采纳,获得30
8秒前
8秒前
8秒前
Akim应助潘小蓝采纳,获得10
8秒前
未晞发布了新的文献求助10
9秒前
杨家欢完成签到 ,获得积分10
10秒前
11秒前
11秒前
VDC发布了新的文献求助10
11秒前
11秒前
Ayu王完成签到,获得积分10
11秒前
12秒前
所所应助gk采纳,获得10
12秒前
maodou发布了新的文献求助10
13秒前
14秒前
徐紫梦完成签到,获得积分10
14秒前
wzc发布了新的文献求助10
15秒前
15秒前
苏杉杉完成签到,获得积分20
15秒前
16秒前
liu发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940989
求助须知:如何正确求助?哪些是违规求助? 4207022
关于积分的说明 13076328
捐赠科研通 3985793
什么是DOI,文献DOI怎么找? 2182277
邀请新用户注册赠送积分活动 1197870
关于科研通互助平台的介绍 1110197