VenusAI: An artificial intelligence platform for scientific discovery on supercomputers

计算机科学 分布式计算 调度(生产过程) 科学发现 虚拟化 建筑 对称多处理机系统 云计算 操作系统 心理学 运营管理 艺术 视觉艺术 经济 认知科学
作者
Tiechui Yao,Jue Wang,Meng Wan,Zhikuang Xin,Yangang Wang,Rongqiang Cao,Shigang Li,Xuebin Chi
出处
期刊:Journal of Systems Architecture [Elsevier]
卷期号:128: 102550-102550 被引量:8
标识
DOI:10.1016/j.sysarc.2022.102550
摘要

Since the machine learning platform can provide one-stop artificial intelligence (AI) application solutions, it has been widely used in the industrial and commercial internet fields in recent years. Based on the heterogeneous accelerator cards, scientific discovery using large-scale computation and massive data is a significant tendency in the future. However, building a platform for scientific discovery remains challenging, including large-scale heterogeneous resource scheduling and support for massive multi-source data. To free researchers from tedious resource management and environmental configuration, we propose a VenusAI platform for large-scale computing scenarios in scientific research, based on heterogeneous resources scheduling framework. This paper firstly illustrates the VenusAI platform architecture design scheme based on the supercomputers and elaborates on the virtualization and containerization of the underlying hardware resources. Next, a technical framework for heterogeneous resource aggregation and scheduling is proposed. A unified resource interface in the application service layer is introduced. Considering the core three parts of the AI scenario: data, model, and computing power, modularized service decoupling is carried out. Furthermore, three types of experiments are evaluated on the supercomputers and show that the performance of the scheduling framework on virtual clusters is better than that on common clusters. Finally, three scientific discovery applications deployed on VenusAI, i.e., new energy forecasting, materials design, and unmanned aerial vehicle planning, demonstrate the advantages of the platform in solving practical scientific problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCR发布了新的文献求助10
刚刚
su发布了新的文献求助10
2秒前
善学以致用应助钰c采纳,获得10
2秒前
Fundamental完成签到,获得积分20
3秒前
通~发布了新的文献求助10
3秒前
Akim应助阿屁屁猪采纳,获得10
3秒前
4秒前
细雨听风发布了新的文献求助10
4秒前
4秒前
英俊的小松鼠完成签到,获得积分10
4秒前
5秒前
7秒前
cc完成签到,获得积分20
7秒前
8秒前
8秒前
背后翠梅完成签到,获得积分10
8秒前
8秒前
涛涛发布了新的文献求助10
8秒前
lan完成签到,获得积分10
8秒前
皮皮完成签到 ,获得积分10
9秒前
ChiDaiOLD完成签到,获得积分10
9秒前
9秒前
情怀应助顺顺采纳,获得10
9秒前
Fundamental发布了新的文献求助10
11秒前
咩咩发布了新的文献求助10
11秒前
kingmin应助金鸡奖采纳,获得10
11秒前
喜悦蚂蚁完成签到,获得积分10
12秒前
赘婿应助拼搏向前采纳,获得10
12秒前
12秒前
12秒前
路十三完成签到 ,获得积分10
13秒前
Lucas应助Sophia采纳,获得10
14秒前
lan发布了新的文献求助10
14秒前
金容发布了新的文献求助10
14秒前
京阿尼发布了新的文献求助10
15秒前
好久不见发布了新的文献求助10
15秒前
小二郎应助轩辕德地采纳,获得10
15秒前
超级的飞飞完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808