VenusAI: An artificial intelligence platform for scientific discovery on supercomputers

计算机科学 分布式计算 调度(生产过程) 科学发现 虚拟化 建筑 对称多处理机系统 云计算 操作系统 心理学 运营管理 艺术 视觉艺术 经济 认知科学
作者
Tiechui Yao,Jue Wang,Meng Wan,Zhikuang Xin,Yangang Wang,Rongqiang Cao,Shigang Li,Xuebin Chi
出处
期刊:Journal of Systems Architecture [Elsevier BV]
卷期号:128: 102550-102550 被引量:13
标识
DOI:10.1016/j.sysarc.2022.102550
摘要

Since the machine learning platform can provide one-stop artificial intelligence (AI) application solutions, it has been widely used in the industrial and commercial internet fields in recent years. Based on the heterogeneous accelerator cards, scientific discovery using large-scale computation and massive data is a significant tendency in the future. However, building a platform for scientific discovery remains challenging, including large-scale heterogeneous resource scheduling and support for massive multi-source data. To free researchers from tedious resource management and environmental configuration, we propose a VenusAI platform for large-scale computing scenarios in scientific research, based on heterogeneous resources scheduling framework. This paper firstly illustrates the VenusAI platform architecture design scheme based on the supercomputers and elaborates on the virtualization and containerization of the underlying hardware resources. Next, a technical framework for heterogeneous resource aggregation and scheduling is proposed. A unified resource interface in the application service layer is introduced. Considering the core three parts of the AI scenario: data, model, and computing power, modularized service decoupling is carried out. Furthermore, three types of experiments are evaluated on the supercomputers and show that the performance of the scheduling framework on virtual clusters is better than that on common clusters. Finally, three scientific discovery applications deployed on VenusAI, i.e., new energy forecasting, materials design, and unmanned aerial vehicle planning, demonstrate the advantages of the platform in solving practical scientific problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
松山湖宗师完成签到,获得积分10
2秒前
May完成签到,获得积分10
2秒前
汉堡包应助jhz采纳,获得10
2秒前
4秒前
砡君完成签到,获得积分10
4秒前
情怀应助Xinzz采纳,获得10
4秒前
4秒前
一派倾城完成签到,获得积分10
4秒前
4秒前
飘飘发布了新的文献求助10
4秒前
XX完成签到,获得积分10
4秒前
单纯的爆米花完成签到,获得积分10
4秒前
JamesPei应助典雅的俊驰采纳,获得10
4秒前
5秒前
充电宝应助zz采纳,获得10
5秒前
蕾蕾完成签到,获得积分20
5秒前
5秒前
hbu123完成签到,获得积分10
5秒前
5秒前
光亮的绿凝关注了科研通微信公众号
5秒前
科研通AI6应助咪咪摸摸采纳,获得10
6秒前
6秒前
6秒前
yzbbb发布了新的文献求助10
6秒前
7秒前
君君完成签到,获得积分10
7秒前
Owen应助不安的流沙采纳,获得10
7秒前
安全平静发布了新的文献求助10
8秒前
8秒前
8秒前
zwenng发布了新的文献求助10
8秒前
满满嘟嘟发布了新的文献求助10
9秒前
wacfpp完成签到,获得积分10
9秒前
欣欣子发布了新的文献求助10
9秒前
小小完成签到,获得积分10
9秒前
嘎嘎发布了新的文献求助10
9秒前
君君发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475