VenusAI: An artificial intelligence platform for scientific discovery on supercomputers

计算机科学 分布式计算 调度(生产过程) 科学发现 虚拟化 建筑 对称多处理机系统 云计算 操作系统 心理学 运营管理 艺术 视觉艺术 经济 认知科学
作者
Tiechui Yao,Jue Wang,Meng Wan,Zhikuang Xin,Yangang Wang,Rongqiang Cao,Shigang Li,Xuebin Chi
出处
期刊:Journal of Systems Architecture [Elsevier]
卷期号:128: 102550-102550 被引量:8
标识
DOI:10.1016/j.sysarc.2022.102550
摘要

Since the machine learning platform can provide one-stop artificial intelligence (AI) application solutions, it has been widely used in the industrial and commercial internet fields in recent years. Based on the heterogeneous accelerator cards, scientific discovery using large-scale computation and massive data is a significant tendency in the future. However, building a platform for scientific discovery remains challenging, including large-scale heterogeneous resource scheduling and support for massive multi-source data. To free researchers from tedious resource management and environmental configuration, we propose a VenusAI platform for large-scale computing scenarios in scientific research, based on heterogeneous resources scheduling framework. This paper firstly illustrates the VenusAI platform architecture design scheme based on the supercomputers and elaborates on the virtualization and containerization of the underlying hardware resources. Next, a technical framework for heterogeneous resource aggregation and scheduling is proposed. A unified resource interface in the application service layer is introduced. Considering the core three parts of the AI scenario: data, model, and computing power, modularized service decoupling is carried out. Furthermore, three types of experiments are evaluated on the supercomputers and show that the performance of the scheduling framework on virtual clusters is better than that on common clusters. Finally, three scientific discovery applications deployed on VenusAI, i.e., new energy forecasting, materials design, and unmanned aerial vehicle planning, demonstrate the advantages of the platform in solving practical scientific problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
天天快乐应助研路辛苦了采纳,获得10
1秒前
liangmh发布了新的文献求助10
2秒前
2秒前
畅快的书包完成签到,获得积分10
3秒前
3秒前
kobesakura发布了新的文献求助10
3秒前
4秒前
Blessedone发布了新的文献求助10
4秒前
浙江嘉兴完成签到,获得积分10
4秒前
4秒前
5秒前
天青色等烟雨完成签到 ,获得积分10
6秒前
6秒前
十三完成签到,获得积分20
6秒前
糖醋排骨完成签到,获得积分10
7秒前
shinysparrow应助猪猪hero采纳,获得100
7秒前
7秒前
11发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
在水一方应助cuicui采纳,获得10
9秒前
9秒前
北北完成签到,获得积分10
9秒前
9秒前
KILA完成签到,获得积分10
10秒前
我是老大应助儒雅的寄翠采纳,获得10
10秒前
10秒前
tong发布了新的文献求助10
11秒前
11秒前
五十一笑声应助xxx采纳,获得30
12秒前
123发布了新的文献求助30
12秒前
LamChem发布了新的文献求助10
13秒前
雪飞杨发布了新的文献求助10
13秒前
标致凡白完成签到,获得积分10
13秒前
13秒前
结实问兰发布了新的文献求助10
13秒前
赵某人发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655