VenusAI: An artificial intelligence platform for scientific discovery on supercomputers

计算机科学 分布式计算 调度(生产过程) 科学发现 虚拟化 建筑 对称多处理机系统 云计算 操作系统 心理学 运营管理 艺术 视觉艺术 经济 认知科学
作者
Tiechui Yao,Jue Wang,Meng Wan,Zhikuang Xin,Yangang Wang,Rongqiang Cao,Shigang Li,Xuebin Chi
出处
期刊:Journal of Systems Architecture [Elsevier BV]
卷期号:128: 102550-102550 被引量:13
标识
DOI:10.1016/j.sysarc.2022.102550
摘要

Since the machine learning platform can provide one-stop artificial intelligence (AI) application solutions, it has been widely used in the industrial and commercial internet fields in recent years. Based on the heterogeneous accelerator cards, scientific discovery using large-scale computation and massive data is a significant tendency in the future. However, building a platform for scientific discovery remains challenging, including large-scale heterogeneous resource scheduling and support for massive multi-source data. To free researchers from tedious resource management and environmental configuration, we propose a VenusAI platform for large-scale computing scenarios in scientific research, based on heterogeneous resources scheduling framework. This paper firstly illustrates the VenusAI platform architecture design scheme based on the supercomputers and elaborates on the virtualization and containerization of the underlying hardware resources. Next, a technical framework for heterogeneous resource aggregation and scheduling is proposed. A unified resource interface in the application service layer is introduced. Considering the core three parts of the AI scenario: data, model, and computing power, modularized service decoupling is carried out. Furthermore, three types of experiments are evaluated on the supercomputers and show that the performance of the scheduling framework on virtual clusters is better than that on common clusters. Finally, three scientific discovery applications deployed on VenusAI, i.e., new energy forecasting, materials design, and unmanned aerial vehicle planning, demonstrate the advantages of the platform in solving practical scientific problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
1秒前
渊思发布了新的文献求助10
2秒前
lang发布了新的文献求助10
3秒前
4秒前
桐桐应助xiaobao采纳,获得10
4秒前
5秒前
6秒前
XiaoQi完成签到,获得积分10
6秒前
甜甜千兰完成签到 ,获得积分10
7秒前
FYFaue3ng发布了新的文献求助10
9秒前
12秒前
打打应助牛牛眉目采纳,获得10
12秒前
13秒前
不一样的光完成签到,获得积分10
14秒前
16秒前
CHN完成签到 ,获得积分10
17秒前
内向的小凡完成签到,获得积分0
21秒前
97完成签到,获得积分10
22秒前
李健的小迷弟应助默默筮采纳,获得10
22秒前
淡然的衣完成签到,获得积分10
25秒前
25秒前
zkk完成签到 ,获得积分10
25秒前
xiaobao完成签到,获得积分20
25秒前
杜兰特发布了新的文献求助10
28秒前
29秒前
29秒前
31秒前
liuguohua126发布了新的文献求助10
33秒前
xingxinghan完成签到 ,获得积分10
34秒前
35秒前
书中魂我自不理会完成签到 ,获得积分10
35秒前
自己发布了新的文献求助10
35秒前
35秒前
666应助牛牛眉目采纳,获得10
39秒前
40秒前
默默筮发布了新的文献求助10
40秒前
Pendragon完成签到,获得积分10
41秒前
犹豫的世倌完成签到,获得积分10
41秒前
充电宝应助自己采纳,获得10
41秒前
xhm发布了新的文献求助10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351