亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media

催化作用 电催化剂 电化学 纳米颗粒 材料科学 化学工程 氧还原反应 吸附 燃料电池 化学 纳米技术 物理化学 电极 有机化学 工程类
作者
Daqiang Yan,Lin Zhang,Lei Shen,Runyu Hu,Weiping Xiao,Xiaofei Yang
出处
期刊:Green Energy & Environment [Elsevier]
卷期号:8 (4): 1205-1215 被引量:10
标识
DOI:10.1016/j.gee.2022.01.011
摘要

Developing high efficient Pd-based electrocatalysts for oxygen reduction reaction (ORR) is still challenging for alkaline membrane fuel cell, since the strong oxygen adsorption energy and easy agglomerative intrinsic properties. In order to simultaneously solve these problems, Pd/Co3O4–N–C multidimensional materials with porous structures is designed as the ORR catalysts. In details, the ZIF-67 with polyhedral structure was firstly synthesized and then annealed at high-temperature to prepare the N-doped Co3O4 carbon-based material, which was used to homogeneously confine Pd nanoparticles and obtained the Pd/Co3O4–N–C series catalysts. The formation of Co–N and C–N bond could provide efficient active site for ORR. Simultaneously, the strong electronic interaction in the interface between the Pd and N-doped Co3O4 could disperse and avoid the agglomeration of Pd nanoparticles and ensure the exposure of active sites, which is crucial to lower the energy barrier toward ORR and substantially enhance the ORR kinetics. Hence, the Pd/Co3O4–N–C nanocompounds exhibited excellent ORR catalytic performance, ideal Pd mass activity, and durability in 0.1 mol L−1 KOH solution compared with Co3O4–N–C and Pd/C. The scalable synthesis method, relatively low cost, and excellent electrochemical ORR performance indicated that the obtained Pd/Co3O4–N–C electrocatalyst had the potential for application on fuel cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
ppjkq1完成签到,获得积分10
6秒前
ppjkq1发布了新的文献求助10
9秒前
12秒前
世良发布了新的文献求助10
16秒前
21秒前
27秒前
所所应助世良采纳,获得10
27秒前
shaylie完成签到 ,获得积分10
39秒前
andrele发布了新的文献求助10
39秒前
倔强毛驴侠完成签到,获得积分10
51秒前
斯文败类应助优秀的甜菜采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
归尘应助科研通管家采纳,获得10
55秒前
55秒前
ceeray23应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
自觉的依波完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
1分钟前
llll发布了新的文献求助10
1分钟前
1分钟前
llll完成签到,获得积分20
1分钟前
柳行天完成签到 ,获得积分10
1分钟前
1分钟前
JamesPei应助llll采纳,获得10
1分钟前
耍酷的鹰完成签到,获得积分10
1分钟前
于戏完成签到,获得积分10
1分钟前
orixero应助世良采纳,获得10
1分钟前
佳佳发布了新的文献求助10
2分钟前
充电宝应助佳佳采纳,获得10
2分钟前
顺心人达完成签到 ,获得积分10
2分钟前
NexusExplorer应助风景园林采纳,获得10
2分钟前
2分钟前
元首完成签到 ,获得积分10
2分钟前
lmk完成签到 ,获得积分10
2分钟前
wujiaman345发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650722
求助须知:如何正确求助?哪些是违规求助? 4781542
关于积分的说明 15052547
捐赠科研通 4809550
什么是DOI,文献DOI怎么找? 2572377
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487367