初始化
啁啾声
算法
计算机科学
分解
时频分析
信号(编程语言)
多普勒效应
矩阵分解
组分(热力学)
频域
奇异值分解
稀疏逼近
代表(政治)
信号处理
瞬时相位
电信
计算机视觉
物理
光学
雷达
天文
生物
激光器
法学
程序设计语言
量子力学
特征向量
政治学
生态学
热力学
政治
作者
Huan Wang,Le Kang,Kaiming Li,Ying Luo,Qun Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:19: 1-5
被引量:3
标识
DOI:10.1109/lgrs.2022.3148594
摘要
When echoes of micromotion targets are overlapping in the time-frequency (TF) domain and sampling data are missing, the decomposition of the multicomponent micro-Doppler (m-D) signals is challenging. To address this issue, this letter proposes a method for multicomponent m-D signal decomposition by iterations of the instantaneous frequencies (IFs), individual components, and complex envelopes. To initialize the IFs, the well-focused time-frequency representation (TFR) is obtained by sparse reconstruction of the incomplete data, and then the IFs of the TFR can be estimated by the short-time variational mode decomposition (STVMD) algorithm. After initialization, the IFs, individual components, and complex envelopes are updated by the intrinsic chirp component decomposition (ICCD), alternating direction method (ADMM) of multipliers, and least-square-error criterion (LSEC), respectively. Finally, the proposed method is verified by simulation and application to real data.
科研通智能强力驱动
Strongly Powered by AbleSci AI