Constructing Structurally Ordered High‐Entropy Alloy Nanoparticles on Nitrogen‐Rich Mesoporous Carbon Nanosheets for High‐Performance Oxygen Reduction

材料科学 介孔材料 纳米片 纳米颗粒 合金 化学工程 退火(玻璃) 催化作用 纳米技术 复合材料 有机化学 工程类 化学
作者
Guihua Zhu,Ying Jiang,Haoyu Yang,Haifeng Wang,Yuan Fang,Lei Wang,Meng Xie,Pengpeng Qiu,Wei Luo
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (15): e2110128-e2110128 被引量:122
标识
DOI:10.1002/adma.202110128
摘要

Abstract Recent efforts have observed nanoscaled chemical short‐range order in bulk high‐entropy alloys (HEAs). Simultaneously inspired with the nanostructuring technology, HEA nanoparticles (NPs) with complete chemical order may be achieved. Herein, structurally ordered HEA (OHEA) NPs are constructed on a novel 2D nitrogen‐rich mesoporous carbon sandwich framework (OHEA‐mNC) by combining a ligand‐assisted interfacial assembly with NH 3 annealing. Characterization results show that the resultant materials possess an ultrathin 2D nanosheet structure with large mesopores (≈10 nm), where structurally ordered HEA NPs with an L1 2 phase are homogeneously dispersed. The atom‐resolved chemical analyses explicitly determine the location of each atomic site. When being evaluated for the oxygen reduction reaction, the OHEA‐mNC NPs afford a greatly enhanced catalytic performance, including a large half‐wave potential (0.90 eV) and a high durability (0.01 V decay after 10 000 cycles) compared with the disordered HEA and commercial Pt/C catalysts. The excellent performance is attributed to the enhanced mass transfer rate, improved electron conductivity, and the presence of the stable chemically ordered HEA phase, as revealed by both the experimental results and theoretical calculation. This study suggests a highly feasible process to achieve structurally ordered HEA NPs with advanced mesoporous function in the electrochemical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
上官若男应助志小天采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
SY发布了新的文献求助10
2秒前
3秒前
xiaofanwang完成签到,获得积分10
3秒前
4秒前
4秒前
左丘冥完成签到,获得积分10
5秒前
5秒前
内向的小虾米完成签到,获得积分10
6秒前
迪迪张完成签到,获得积分10
6秒前
桐桐应助小张同学采纳,获得10
6秒前
阳6完成签到 ,获得积分10
6秒前
xiaojin完成签到,获得积分10
7秒前
liu完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
大锅逢饭完成签到,获得积分10
7秒前
7秒前
志小天完成签到,获得积分10
8秒前
9秒前
自觉志泽发布了新的文献求助10
9秒前
ping完成签到 ,获得积分10
9秒前
9秒前
米子哈发布了新的文献求助10
10秒前
华仔应助刘奎冉采纳,获得30
10秒前
研友Bn完成签到 ,获得积分10
11秒前
11秒前
12秒前
xinghe123发布了新的文献求助10
12秒前
酷酷问薇完成签到,获得积分20
13秒前
13秒前
H_完成签到,获得积分10
13秒前
2024dsb完成签到 ,获得积分10
14秒前
14秒前
西行纪发布了新的文献求助10
15秒前
DreamSeker8完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809