Mendelian randomization

孟德尔随机化 随机化 医学 生物 内科学 遗传学 遗传变异 随机对照试验 基因 基因型
作者
Eleanor Sanderson,M. Maria Glymour,Michael V. Holmes,Hyunseung Kang,Jean Morrison,Marcus R. Munafò,Tom Palmer,C. Mary Schooling,Chris Wallace,Qingyuan Zhao,George Davey Smith
出处
期刊:Nature Reviews Methods Primers [Springer Nature]
卷期号:2 (1) 被引量:1520
标识
DOI:10.1038/s43586-021-00092-5
摘要

Mendelian randomization (MR) is a term that applies to the use of genetic variation to address causal questions about how modifiable exposures influence different outcomes. The principles of MR are based on Mendel’s laws of inheritance and instrumental variable estimation methods, which enable the inference of causal effects in the presence of unobserved confounding. In this Primer, we outline the principles of MR, the instrumental variable conditions underlying MR estimation and some of the methods used for estimation. We go on to discuss how the assumptions underlying an MR study can be assessed and describe methods of estimation that are robust to certain violations of these assumptions. We give examples of a range of studies in which MR has been applied, the limitations of current methods of analysis and the outlook for MR in the future. The differences between the assumptions required for MR analysis and other forms of epidemiological studies means that MR can be used as part of a triangulation across multiple sources of evidence for causal inference. Mendelian randomization is a technique for using genetic variation to examine the causal effect of a modifiable exposure on an outcome such as disease status. This Primer by Sanderson et al. explains the concepts of and the conditions required for Mendelian randomization analysis, describes key examples of its application and looks towards applying the technique to growing genomic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
应如是发布了新的文献求助10
刚刚
1秒前
小黑莓完成签到,获得积分10
1秒前
大饱嗝儿发布了新的文献求助20
1秒前
小北完成签到,获得积分10
2秒前
LaTeXer应助科研通管家采纳,获得100
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
流星雨完成签到,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得20
4秒前
ephore应助科研通管家采纳,获得150
4秒前
LaTeXer应助科研通管家采纳,获得100
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
彭于晏应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
李健应助超级向薇采纳,获得10
7秒前
8秒前
亿万斯年应助仔仔仔平采纳,获得10
8秒前
10秒前
11秒前
22完成签到 ,获得积分10
11秒前
浮游应助大气的世德采纳,获得10
12秒前
拼搏不言发布了新的文献求助10
13秒前
哈哈发布了新的文献求助10
13秒前
ch完成签到,获得积分20
14秒前
浮游应助lily采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914764
求助须知:如何正确求助?哪些是违规求助? 4188967
关于积分的说明 13009594
捐赠科研通 3957857
什么是DOI,文献DOI怎么找? 2169981
邀请新用户注册赠送积分活动 1188177
关于科研通互助平台的介绍 1095876