亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised learning-assisted imaging method for electrical capacitance tomography

稳健性(进化) 计算机科学 电容层析成像 迭代重建 加速 人工智能 断层重建 过程(计算) 最优化问题 深度学习 算法 机器学习 数学优化 电容 数学 化学 基因 物理化学 操作系统 生物化学 电极
作者
Jing Lei,Q.B. Liu
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:106: 126-149
标识
DOI:10.1016/j.apm.2022.01.027
摘要

Despite the enormous potential of the electrical capacitance tomography technology for the process industry, one of the main technological gaps and obstacles that must be overcome is the low accuracy reconstruction. To address this technical challenge, the data-dependent prior is introduced in this study, which is combined with the electrical measurement mechanism and the domain knowledge to reshape the tomographic imaging problem into a new optimization problem. The introduction of the data-dependent prior not only bridges the physical model and the advanced semi-supervised learning technique, but also improves the adaptability of the reconstruction model. A new numerical scheme that integrates the merits of the half-quadratic splitting method and the forward-backward splitting technique with a speedup strategy is proposed to solve the challenging imaging model, leading to the reduced computational burden. A new robust sparse semi-supervised extreme learning machine method that leverages both labeled and unlabeled samples and effectively handles high-dimensional image data is developed to predict the data-dependent prior, and the training is recast into a new optimization problem that is solved by a new numerical method. The novel imaging method achieves the reconstruction paradigm shift and acts as a catalyst for improving imaging quality. The evaluation of a series of reconstruction cases validates that the novel method shows satisfactory performances, outperforming both popular and classical imaging methods in terms of robustness and reconstruction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
34秒前
34秒前
34秒前
34秒前
35秒前
nsc发布了新的文献求助10
36秒前
nsc发布了新的文献求助10
36秒前
nsc发布了新的文献求助10
37秒前
nsc发布了新的文献求助10
37秒前
nsc发布了新的文献求助10
37秒前
nsc发布了新的文献求助10
37秒前
nsc发布了新的文献求助10
37秒前
nsc发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264