Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer

阴极 质子交换膜燃料电池 润湿 分析化学(期刊) 化学计量学 传质 材料科学 化学 图层(电子) 化学工程 催化作用 复合材料 色谱法 物理化学 有机化学 工程类
作者
Yue Wan,Diankai Qiu,Peiyun Yi,Linfa Peng,Xinmin Lai
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118723-118723 被引量:32
标识
DOI:10.1016/j.apenergy.2022.118723
摘要

The design of cathode catalyst layer (CL) is essential to improve the mass transfer capacity of proton exchange membrane (PEM) fuel cell and increase power density. In this work, cathode CL is divided into three sub-layers, and each sub-layer is added nano-particles with different wettability. The gradient CL with hydrophilic SiO2 particles at inner layer and hydrophobic polytetrafluoroethylene (PTFE) particles at outer layer significantly enhances the performance of membrane exchange assembly (MEA). Its performance is 895 mW/cm2@0.6 V, which is 24.1 %higher than CL without any particles (721 mW/cm2@ 0.6 V). Under operating conditions of high current density, high cathode humidity and high air stoichiometry, the gradient CL has only a little voltage loss. Through Electrochemical Impedance Spectroscopies (EIS) impedance analysis under high current density (1.8A/cm2), mass transfer resistance of gradient CL is 25.4 Ω, and is much smaller than the mass transfer resistance of the homogeneous CL of 35.1 Ω, which reflects the significant enhancement in mass transfer capacity of gradient CL. The gradient catalyst layer is suitable for a wider range of current density, humidity, and stoichiometry, but excessive cathode gas stoichiometry causes a decrease in performance, which is caused by excessive drainage capacity. In addition, 18 different gradient CLs are designed and manufactured, and the gradient CL with catalyst coated membrane (CCM) structure has the best performance. In gradient CL, increasing the capillary pressure difference between sublayers is the key to performance improvement. It is confirmed that the property of MEA with appropriate wettability gradient design can be significantly improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Jianhong采纳,获得10
刚刚
刚刚
一棵树完成签到,获得积分10
刚刚
36456657应助Katyusha采纳,获得20
刚刚
1秒前
星星完成签到,获得积分10
1秒前
科研通AI6应助敬之采纳,获得10
1秒前
2秒前
2秒前
mzmz发布了新的文献求助10
2秒前
林昊完成签到,获得积分10
2秒前
3秒前
复苏应助郭mm采纳,获得10
3秒前
samsara完成签到 ,获得积分10
3秒前
铭铭铭完成签到,获得积分10
3秒前
小米应助郭mm采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
我是老大应助九bai采纳,获得10
3秒前
4秒前
4秒前
XI_2001发布了新的文献求助10
4秒前
4秒前
4秒前
xW12123完成签到,获得积分10
5秒前
5秒前
5秒前
季秋十二发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
爱学习的小燕子完成签到,获得积分10
6秒前
6秒前
dato12423完成签到,获得积分10
6秒前
思源应助百事可乐采纳,获得10
6秒前
夏夏发布了新的文献求助10
6秒前
lu完成签到,获得积分10
6秒前
十七完成签到,获得积分10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210