Efficient and Privacy-Preserving Similarity Query With Access Control in eHealthcare

计算机科学 相似性(几何) 树(集合论) 加密 访问控制 情报检索 搜索引擎索引 信息隐私 理论计算机科学 数据挖掘 人工智能 数学 计算机安全 图像(数学) 数学分析
作者
Yandong Zheng,Rongxing Lu,Yunguo Guan,Songnian Zhang,Jun Shao,Hui Zhu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 880-893 被引量:9
标识
DOI:10.1109/tifs.2022.3152395
摘要

Similarity queries, giving a way to disease diagnosis based on similar patients, have wide applications in eHealthcare and are essentially demanded to be processed under fine-grained access policies due to the high sensitivity of healthcare data. One efficient and flexible way to implement such queries is to outsource healthcare data and the corresponding query services to a powerful cloud. Nevertheless, considering data privacy, healthcare data are usually outsourced in an encrypted form and required to be accessed in a privacy-preserving way. In the past years, many schemes have been proposed for privacy-preserving similarity queries. However, none of them is applicable to achieve data access control and access pattern privacy preservation. Aiming at this challenge, we propose an efficient and access pattern privacy-preserving similarity range query scheme with access control (named EPSim-AC). In our proposed scheme, we first design a novel tree structure, called $k$ -d-PB tree, to index healthcare data and introduce an efficient $k$ -d-PB tree based similarity query algorithm with access control. Second, to balance the search efficiency and access pattern privacy of $k$ -d-PB tree, we also define a weakened access pattern privacy, called $k$ -d-PB tree’s $\beta $ -access pattern unlinkability. After that, we preserve the privacy of $k$ -d-PB tree based similarity queries with access control through a symmetric homomorphic encryption scheme and present our detailed EPSim-AC scheme. Finally, we analyze the security of our scheme and also conduct extensive experiments to evaluate its performance. The results demonstrate that our scheme can guarantee $k$ -d-PB tree’s $\beta $ -access pattern unlinkability and has high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夕完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
yn完成签到,获得积分10
2秒前
科研通AI5应助练习者采纳,获得10
4秒前
mm完成签到,获得积分10
5秒前
G大芋头发布了新的文献求助10
5秒前
汉堡包应助Peter采纳,获得10
6秒前
6秒前
Owen应助qq采纳,获得10
6秒前
7秒前
7秒前
优雅的十八完成签到,获得积分20
7秒前
7秒前
zhusy347完成签到,获得积分10
7秒前
Hello应助雪糕刺客采纳,获得10
7秒前
赘婿应助大家好车架号h采纳,获得10
7秒前
杰杰完成签到,获得积分10
8秒前
冷静的飞槐完成签到,获得积分20
8秒前
Wenhui关注了科研通微信公众号
9秒前
mm发布了新的文献求助20
9秒前
10秒前
情怀应助曾玲萍采纳,获得10
10秒前
虚心的函发布了新的文献求助10
11秒前
11秒前
11秒前
冯志华发布了新的文献求助10
12秒前
cc虎完成签到,获得积分20
12秒前
祥云发布了新的文献求助10
12秒前
汉堡包应助能干的孤丝采纳,获得10
12秒前
充电宝应助G大芋头采纳,获得10
12秒前
13秒前
牛肉粒哦完成签到,获得积分10
14秒前
14秒前
彪壮的斩发布了新的文献求助10
14秒前
LL发布了新的文献求助10
15秒前
灰色与青完成签到,获得积分10
15秒前
佳佳完成签到,获得积分10
16秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745114
求助须知:如何正确求助?哪些是违规求助? 3288017
关于积分的说明 10057088
捐赠科研通 3004221
什么是DOI,文献DOI怎么找? 1649626
邀请新用户注册赠送积分活动 785428
科研通“疑难数据库(出版商)”最低求助积分说明 751077