TCGL: Temporal Contrastive Graph for Self-supervised Video Representation Learning

计算机科学 人工智能 图形 特征学习 代表(政治) 模式识别(心理学)
作者
Yang Liu,Keze Wang,Lingbo Liu,Haoyuan Lan,Liang Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2022.3147032
摘要

Video self-supervised learning is a challenging task, which requires significant expressive power from the model to leverage rich spatial-temporal knowledge and generate effective supervisory signals from large amounts of unlabeled videos. However, existing methods fail to increase the temporal diversity of unlabeled videos and ignore elaborately modeling multi-scale temporal dependencies in an explicit way. To overcome these limitations, we take advantage of the multi-scale temporal dependencies within videos and proposes a novel video self-supervised learning framework named Temporal Contrastive Graph Learning (TCGL), which jointly models the inter-snippet and intra-snippet temporal dependencies for temporal representation learning with a hybrid graph contrastive learning strategy. Specifically, a Spatial-Temporal Knowledge Discovering (STKD) module is first introduced to extract motion-enhanced spatial-temporal representations from videos based on the frequency domain analysis of discrete cosine transform. To explicitly model multi-scale temporal dependencies of unlabeled videos, our TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet Temporal Contrastive Graphs (TCG). Then, specific contrastive learning modules are designed to maximize the agreement between nodes in different graph views. To generate supervisory signals for unlabeled videos, we introduce an Adaptive Snippet Order Prediction (ASOP) module which leverages the relational knowledge among video snippets to learn the global context representation and recalibrate the channel-wise features adaptively. Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks. The code is publicly available at https://github.com/YangLiu9208/TCGL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西关以西应助瞿霞采纳,获得10
刚刚
小二郎应助Ellen采纳,获得10
2秒前
2秒前
2秒前
落后鹭洋完成签到,获得积分10
3秒前
寰2023发布了新的文献求助10
3秒前
6秒前
6秒前
6秒前
jjhh发布了新的文献求助10
8秒前
8秒前
Ava应助郑石采纳,获得10
8秒前
天天快乐应助科研小白采纳,获得30
11秒前
baocq发布了新的文献求助10
11秒前
ie发布了新的文献求助10
11秒前
慧妞完成签到 ,获得积分10
12秒前
寰2023完成签到,获得积分10
14秒前
淙淙柔水完成签到,获得积分0
15秒前
瞿霞完成签到 ,获得积分10
15秒前
jjhh完成签到,获得积分20
16秒前
Xavier发布了新的文献求助10
19秒前
demoestar完成签到 ,获得积分10
19秒前
东皇太一完成签到,获得积分10
19秒前
19秒前
笑点低涟妖完成签到,获得积分10
20秒前
ie完成签到,获得积分10
20秒前
21秒前
21秒前
快乐冰之完成签到 ,获得积分10
23秒前
郑石发布了新的文献求助10
24秒前
24秒前
善良诗珊发布了新的文献求助10
25秒前
彩色语蝶完成签到,获得积分10
26秒前
29秒前
科研小白发布了新的文献求助30
30秒前
30秒前
ajing完成签到,获得积分10
31秒前
无辜的电灯胆完成签到,获得积分10
31秒前
包容的映天完成签到,获得积分10
32秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461043
求助须知:如何正确求助?哪些是违规求助? 3054837
关于积分的说明 9045084
捐赠科研通 2744737
什么是DOI,文献DOI怎么找? 1505651
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695173