Deep Residual Neural Network-Based Defect Detection on Complex Backgrounds

人工智能 残余物 计算机科学 卷积神经网络 套管 计算机视觉 滑动窗口协议 特征提取 像素 模式识别(心理学) 人工神经网络 特征(语言学) 窗口(计算) 工程类 算法 语言学 哲学 石油工程 操作系统
作者
Chao-Ching Ho,Miguel A. Hernández,Yifan Chen,Chih‐Jer Lin,Chin‐Sheng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:14
标识
DOI:10.1109/tim.2022.3144224
摘要

An inspection device with a set of lights, a six-axis robot arm, and a camera is designed for image acquisition. A deep residual neural network (DRNN) performs both the feature extraction and classification tasks simultaneously. This article makes several modifications of ResnNet50 to ensure accurate and reliable predictions. The dataset consists of a collection of images of a plastic casing with different types of scratches. Most defects in the dataset are thin, shallow, and small. Due to the spatial reduction, defects fade because of their features while performing the deep residual network. Thus, mask labeling based on pixel annotation crops a subimage using a sliding window. Efforts have been made to solve the faded issue while DRNN. The experimental results for 600 plastic casing images show that the proposed method significantly increases the convolutional algorithm's ability to detect defects accurately. The defect detection accuracy is approximately 96.38%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wubinbin发布了新的文献求助10
刚刚
修骨匠人完成签到,获得积分10
1秒前
zhoumaoyuan发布了新的文献求助10
1秒前
脑洞疼应助echo采纳,获得10
1秒前
2秒前
领导范儿应助包容柜子采纳,获得10
3秒前
繁星完成签到 ,获得积分10
5秒前
7秒前
8秒前
似乎一场梦完成签到 ,获得积分10
8秒前
dio小面包完成签到 ,获得积分10
9秒前
10秒前
skylee完成签到,获得积分10
10秒前
11秒前
幸福小丸子完成签到,获得积分10
11秒前
困困包发布了新的文献求助10
13秒前
Xjx6519发布了新的文献求助10
14秒前
桐桐应助专注的水壶采纳,获得10
17秒前
斯文败类应助ZeZeZe采纳,获得10
17秒前
18秒前
情怀应助FUn采纳,获得10
19秒前
wanci应助Xjx6519采纳,获得10
20秒前
peng完成签到,获得积分10
21秒前
21秒前
23秒前
23秒前
张玮完成签到,获得积分20
30秒前
科研通AI6应助zhoumaoyuan采纳,获得10
31秒前
科研通AI6应助zhoumaoyuan采纳,获得10
31秒前
刻苦的元风完成签到,获得积分10
33秒前
34秒前
幽默滑板完成签到 ,获得积分10
37秒前
kei完成签到,获得积分10
39秒前
John_sdu完成签到,获得积分10
39秒前
40秒前
41秒前
寻道图强应助kingwill采纳,获得50
42秒前
ding应助张玮采纳,获得10
43秒前
花莫凋零发布了新的文献求助10
46秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566