Adaptive Multimodal Emotion Detection Architecture for Social Robots

模式 计算机科学 人工智能 模态(人机交互) 机器人 悲伤 人机交互 社交机器人 人机交互 背景(考古学) 过程(计算) 机器学习 移动机器人 愤怒 心理学 机器人控制 社会学 古生物学 精神科 操作系统 生物 社会科学
作者
Juan Heredia,Edmundo Lopes-Silva,Yudith Cardinale,José Díaz-Amado,Irvin Dongo,Wilfredo Graterol,Ana Aguilera
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 20727-20744 被引量:16
标识
DOI:10.1109/access.2022.3149214
摘要

Emotion recognition is a strategy for social robots used to implement better Human-Robot Interaction and model their social behaviour. Since human emotions can be expressed in different ways (e.g., face, gesture, voice), multimodal approaches are useful to support the recognition process. However, although there exist studies dealing with multimodal emotion recognition for social robots, they still present limitations in the fusion process, dropping their performance if one or more modalities are not present or if modalities have different qualities. This is a common situation in social robotics, due to the high variety of the sensory capacities of robots; hence, more flexible multimodal models are needed. In this context, we propose an adaptive and flexible emotion recognition architecture able to work with multiple sources and modalities of information and manage different levels of data quality and missing data, to lead robots to better understand the mood of people in a given environment and accordingly adapt their behaviour. Each modality is analyzed independently to then aggregate the partial results with a previous proposed fusion method, called EmbraceNet+, which is adapted and integrated to our proposed framework. We also present an extensive review of state-of-the-art studies dealing with fusion methods for multimodal emotion recognition approaches. We evaluate the performance of our proposed architecture by performing different tests in which several modalities are combined to classify emotions using four categories (i.e., happiness, neutral, sadness, and anger). Results reveal that our approach is able to adapt to the quality and presence of modalities. Furthermore, results obtained are validated and compared with other similar proposals, obtaining competitive performance with state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹅鹅鹅饿完成签到,获得积分10
刚刚
南城发布了新的文献求助10
1秒前
幽默涑发布了新的文献求助10
1秒前
啊娴仔发布了新的文献求助10
1秒前
陈半喆发布了新的文献求助10
2秒前
Yziii举报cp3xzh求助涉嫌违规
2秒前
脑洞疼应助小乐子采纳,获得10
2秒前
Kannan发布了新的文献求助10
3秒前
nana完成签到,获得积分10
5秒前
毛豆应助沉默乌采纳,获得10
8秒前
8秒前
千幻完成签到,获得积分10
8秒前
8秒前
chenchenchen发布了新的文献求助30
8秒前
顺科研完成签到,获得积分20
9秒前
9秒前
liu576454693完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
12秒前
bkagyin应助三七采纳,获得20
12秒前
12秒前
jiao发布了新的文献求助10
12秒前
12秒前
demoliu发布了新的文献求助200
13秒前
研友_ZlxK6Z发布了新的文献求助10
13秒前
华仔应助一杯橙采纳,获得10
13秒前
14秒前
16秒前
陈半喆完成签到,获得积分10
16秒前
16秒前
17秒前
情怀应助连冷安采纳,获得10
17秒前
博dada完成签到,获得积分10
18秒前
ahua15s发布了新的文献求助10
18秒前
HLWW发布了新的文献求助10
18秒前
科研通AI2S应助徐臣年采纳,获得30
18秒前
lili发布了新的文献求助10
18秒前
JMao发布了新的文献求助10
19秒前
20秒前
益达发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309071
求助须知:如何正确求助?哪些是违规求助? 2942413
关于积分的说明 8508810
捐赠科研通 2617447
什么是DOI,文献DOI怎么找? 1430137
科研通“疑难数据库(出版商)”最低求助积分说明 664044
邀请新用户注册赠送积分活动 649236