已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Machine Learning approach to reconstruct cloudy affected vegetation indices imagery via data fusion from Sentinel-1 and Landsat 8

归一化差异植被指数 随机森林 遥感 植被(病理学) 合成孔径雷达 增强植被指数 传感器融合 环境科学 土地覆盖 多元统计 计算机科学 人工智能 机器学习 植被指数 气候变化 地质学 土地利用 工程类 医学 海洋学 土木工程 病理
作者
Erli Pinto dos Santos,Demétrius David da Silva,Cibele Hummel do Amaral,Elpídio Inácio Fernandes Filho,Rafael Luís Silva Dias
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106753-106753 被引量:28
标识
DOI:10.1016/j.compag.2022.106753
摘要

• A machine learning based method is proposed to fusion optical and radar images. • Radar vegetation observations were suitable to predict optical vegetation indices. • Random forest algorithm showed best performance in predicting vegetation indices. • Random forest models reconstructed vegetation indices images affected by clouds. A way to reconstruct optical sensor-derived images allowing cloud-free vegetation monitoring is proposed in this paper. The motivation is the influence that clouds have on optical remote sensing of tropical regions, which hinders Earth observation systems because their presence reduces imaging frequency. To circumvent that problem, a machine learning model-based integration methodology for the fusion of Landsat 8 and Sentinel-1 data is proposed herein. Sentinel-1 constellation has mounted Synthetic aperture radar (SAR) sensors are used because the imaging is not affected by clouds due to microwave spectrum characteristics. To study the problem and predict both the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), three algorithms were selected: multivariate linear regression, multivariate adaptive regression splines, and random forest (RF). Two testing strategies were also chosen: k-Fold cross-validation for hyperparameter tuning of the model and holdout testing to assess the generalization ability of the model. The SAR covariables were employed to feed the algorithms, including selected SAR vegetation indices; in addition, environmental data, such as land use and land cover (LULC), the date, and position of the samples were used. The predictions from the NDVI and EVI produced good results, namely, similar Willmott’s agreement index (d) values that ranged from ∼0.64 to 0.96. The best-fitted model was the RF, which was used to reconstruct the NDVI images and produced good results that agreed well with the predictions (d index from 0.58 to 0.87) and spatial patterns. The results obtained show that the integration of radar and environmental covariables with optical vegetation indices can allow vegetation monitoring that is free of gaps due to clouds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容海完成签到 ,获得积分10
刚刚
121314wld完成签到,获得积分10
1秒前
璇22完成签到 ,获得积分10
1秒前
颢懿完成签到 ,获得积分10
1秒前
寻123发布了新的文献求助10
1秒前
无极微光完成签到,获得积分0
2秒前
马霄鑫完成签到,获得积分10
2秒前
momoni完成签到 ,获得积分10
2秒前
皮皮完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
学霸宇大王完成签到 ,获得积分10
4秒前
弧光完成签到 ,获得积分0
5秒前
艾路完成签到,获得积分10
6秒前
kkdsseed发布了新的文献求助10
7秒前
NexusExplorer应助小橘子采纳,获得30
8秒前
ZZ发布了新的文献求助10
9秒前
wenlong完成签到 ,获得积分10
9秒前
10秒前
哈哈完成签到 ,获得积分10
10秒前
门柱帝完成签到,获得积分10
11秒前
kkdsseed完成签到,获得积分10
12秒前
此时此刻完成签到 ,获得积分10
12秒前
xiaoxuey完成签到 ,获得积分10
12秒前
喜宝发布了新的文献求助10
13秒前
BA1完成签到,获得积分10
15秒前
苹果鱼完成签到,获得积分10
15秒前
云yu完成签到,获得积分20
15秒前
tczw667完成签到,获得积分10
16秒前
wang完成签到 ,获得积分10
17秒前
17秒前
鹿小新完成签到 ,获得积分0
17秒前
迷人的爆米花完成签到 ,获得积分10
18秒前
19秒前
小马甲应助wdlc采纳,获得10
19秒前
你里其完成签到,获得积分10
19秒前
han发布了新的文献求助10
20秒前
yuan完成签到 ,获得积分10
20秒前
悦耳以旋完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599529
求助须知:如何正确求助?哪些是违规求助? 4685197
关于积分的说明 14838182
捐赠科研通 4668952
什么是DOI,文献DOI怎么找? 2538068
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470816

今日热心研友

无情的踏歌
140
嘿嘿
7
BowieHuang
40
Criminology34
40
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10