A Machine Learning approach to reconstruct cloudy affected vegetation indices imagery via data fusion from Sentinel-1 and Landsat 8

归一化差异植被指数 随机森林 遥感 植被(病理学) 合成孔径雷达 增强植被指数 传感器融合 环境科学 土地覆盖 多元统计 计算机科学 人工智能 机器学习 植被指数 气候变化 地质学 土地利用 工程类 医学 海洋学 土木工程 病理
作者
Erli Pinto dos Santos,Demétrius David da Silva,Cibele Hummel do Amaral,Elpídio Inácio Fernandes Filho,Rafael Luís Silva Dias
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106753-106753 被引量:28
标识
DOI:10.1016/j.compag.2022.106753
摘要

• A machine learning based method is proposed to fusion optical and radar images. • Radar vegetation observations were suitable to predict optical vegetation indices. • Random forest algorithm showed best performance in predicting vegetation indices. • Random forest models reconstructed vegetation indices images affected by clouds. A way to reconstruct optical sensor-derived images allowing cloud-free vegetation monitoring is proposed in this paper. The motivation is the influence that clouds have on optical remote sensing of tropical regions, which hinders Earth observation systems because their presence reduces imaging frequency. To circumvent that problem, a machine learning model-based integration methodology for the fusion of Landsat 8 and Sentinel-1 data is proposed herein. Sentinel-1 constellation has mounted Synthetic aperture radar (SAR) sensors are used because the imaging is not affected by clouds due to microwave spectrum characteristics. To study the problem and predict both the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), three algorithms were selected: multivariate linear regression, multivariate adaptive regression splines, and random forest (RF). Two testing strategies were also chosen: k-Fold cross-validation for hyperparameter tuning of the model and holdout testing to assess the generalization ability of the model. The SAR covariables were employed to feed the algorithms, including selected SAR vegetation indices; in addition, environmental data, such as land use and land cover (LULC), the date, and position of the samples were used. The predictions from the NDVI and EVI produced good results, namely, similar Willmott’s agreement index (d) values that ranged from ∼0.64 to 0.96. The best-fitted model was the RF, which was used to reconstruct the NDVI images and produced good results that agreed well with the predictions (d index from 0.58 to 0.87) and spatial patterns. The results obtained show that the integration of radar and environmental covariables with optical vegetation indices can allow vegetation monitoring that is free of gaps due to clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
徐涛完成签到,获得积分10
2秒前
领导范儿应助你好采纳,获得10
2秒前
唐新新完成签到,获得积分20
4秒前
热心晓丝发布了新的文献求助10
5秒前
6秒前
汉堡包应助zzzzzz采纳,获得10
6秒前
7秒前
7秒前
唐新新发布了新的文献求助10
7秒前
sunny850完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
Antheali应助科研通管家采纳,获得10
10秒前
唐泽雪穗应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
12秒前
sunny850发布了新的文献求助10
12秒前
13秒前
13秒前
坚定芷烟完成签到,获得积分10
14秒前
飞飞猪完成签到,获得积分20
15秒前
kkz完成签到,获得积分10
15秒前
15秒前
拉圈最菜妮厨完成签到,获得积分10
16秒前
16秒前
杨丹完成签到 ,获得积分20
17秒前
17秒前
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
somebodyzou发布了新的文献求助30
20秒前
kkz发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991289
求助须知:如何正确求助?哪些是违规求助? 4239820
关于积分的说明 13208366
捐赠科研通 4034700
什么是DOI,文献DOI怎么找? 2207462
邀请新用户注册赠送积分活动 1218448
关于科研通互助平台的介绍 1136900