A Machine Learning approach to reconstruct cloudy affected vegetation indices imagery via data fusion from Sentinel-1 and Landsat 8

归一化差异植被指数 随机森林 遥感 植被(病理学) 合成孔径雷达 增强植被指数 传感器融合 环境科学 土地覆盖 多元统计 计算机科学 人工智能 机器学习 植被指数 气候变化 地质学 土地利用 工程类 医学 海洋学 土木工程 病理
作者
Erli Pinto dos Santos,Demétrius David da Silva,Cibele Hummel do Amaral,Elpídio Inácio Fernandes Filho,Rafael Luís Silva Dias
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106753-106753 被引量:28
标识
DOI:10.1016/j.compag.2022.106753
摘要

• A machine learning based method is proposed to fusion optical and radar images. • Radar vegetation observations were suitable to predict optical vegetation indices. • Random forest algorithm showed best performance in predicting vegetation indices. • Random forest models reconstructed vegetation indices images affected by clouds. A way to reconstruct optical sensor-derived images allowing cloud-free vegetation monitoring is proposed in this paper. The motivation is the influence that clouds have on optical remote sensing of tropical regions, which hinders Earth observation systems because their presence reduces imaging frequency. To circumvent that problem, a machine learning model-based integration methodology for the fusion of Landsat 8 and Sentinel-1 data is proposed herein. Sentinel-1 constellation has mounted Synthetic aperture radar (SAR) sensors are used because the imaging is not affected by clouds due to microwave spectrum characteristics. To study the problem and predict both the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), three algorithms were selected: multivariate linear regression, multivariate adaptive regression splines, and random forest (RF). Two testing strategies were also chosen: k-Fold cross-validation for hyperparameter tuning of the model and holdout testing to assess the generalization ability of the model. The SAR covariables were employed to feed the algorithms, including selected SAR vegetation indices; in addition, environmental data, such as land use and land cover (LULC), the date, and position of the samples were used. The predictions from the NDVI and EVI produced good results, namely, similar Willmott’s agreement index (d) values that ranged from ∼0.64 to 0.96. The best-fitted model was the RF, which was used to reconstruct the NDVI images and produced good results that agreed well with the predictions (d index from 0.58 to 0.87) and spatial patterns. The results obtained show that the integration of radar and environmental covariables with optical vegetation indices can allow vegetation monitoring that is free of gaps due to clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Billy发布了新的文献求助10
2秒前
2秒前
3秒前
su完成签到,获得积分20
3秒前
好困发布了新的文献求助10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
ccm应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得20
5秒前
orixero应助科研通管家采纳,获得20
5秒前
浮游应助科研通管家采纳,获得10
5秒前
寒生发布了新的文献求助10
5秒前
6秒前
6秒前
杨沛发布了新的文献求助10
7秒前
7秒前
江芯发布了新的文献求助10
8秒前
whisky完成签到,获得积分10
9秒前
北北北发布了新的文献求助10
9秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593