A Machine Learning approach to reconstruct cloudy affected vegetation indices imagery via data fusion from Sentinel-1 and Landsat 8

归一化差异植被指数 随机森林 遥感 植被(病理学) 合成孔径雷达 增强植被指数 传感器融合 环境科学 土地覆盖 多元统计 计算机科学 人工智能 机器学习 植被指数 气候变化 地质学 土地利用 工程类 医学 海洋学 土木工程 病理
作者
Erli Pinto dos Santos,Demétrius David da Silva,Cibele Hummel do Amaral,Elpídio Inácio Fernandes Filho,Rafael Luís Silva Dias
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106753-106753 被引量:28
标识
DOI:10.1016/j.compag.2022.106753
摘要

• A machine learning based method is proposed to fusion optical and radar images. • Radar vegetation observations were suitable to predict optical vegetation indices. • Random forest algorithm showed best performance in predicting vegetation indices. • Random forest models reconstructed vegetation indices images affected by clouds. A way to reconstruct optical sensor-derived images allowing cloud-free vegetation monitoring is proposed in this paper. The motivation is the influence that clouds have on optical remote sensing of tropical regions, which hinders Earth observation systems because their presence reduces imaging frequency. To circumvent that problem, a machine learning model-based integration methodology for the fusion of Landsat 8 and Sentinel-1 data is proposed herein. Sentinel-1 constellation has mounted Synthetic aperture radar (SAR) sensors are used because the imaging is not affected by clouds due to microwave spectrum characteristics. To study the problem and predict both the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), three algorithms were selected: multivariate linear regression, multivariate adaptive regression splines, and random forest (RF). Two testing strategies were also chosen: k-Fold cross-validation for hyperparameter tuning of the model and holdout testing to assess the generalization ability of the model. The SAR covariables were employed to feed the algorithms, including selected SAR vegetation indices; in addition, environmental data, such as land use and land cover (LULC), the date, and position of the samples were used. The predictions from the NDVI and EVI produced good results, namely, similar Willmott’s agreement index (d) values that ranged from ∼0.64 to 0.96. The best-fitted model was the RF, which was used to reconstruct the NDVI images and produced good results that agreed well with the predictions (d index from 0.58 to 0.87) and spatial patterns. The results obtained show that the integration of radar and environmental covariables with optical vegetation indices can allow vegetation monitoring that is free of gaps due to clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Desire采纳,获得10
1秒前
量子星尘发布了新的文献求助10
4秒前
风信子完成签到,获得积分10
4秒前
小熊完成签到 ,获得积分10
6秒前
10秒前
shu完成签到,获得积分10
10秒前
10秒前
勤奋的毛豆完成签到,获得积分10
13秒前
行者无疆完成签到,获得积分10
13秒前
14秒前
Jackylee完成签到,获得积分10
14秒前
careyzhou发布了新的文献求助10
15秒前
舒心之云完成签到,获得积分10
17秒前
Desire发布了新的文献求助10
17秒前
独自受罪完成签到 ,获得积分10
18秒前
甘蓝型油菜完成签到,获得积分10
19秒前
Distance发布了新的文献求助10
20秒前
大橙子发布了新的文献求助10
21秒前
毛哥看文献完成签到 ,获得积分10
21秒前
Desire完成签到,获得积分10
23秒前
AiQi完成签到 ,获得积分10
24秒前
月月鸟完成签到 ,获得积分10
25秒前
陈永伟完成签到,获得积分10
27秒前
传奇3应助qq采纳,获得10
27秒前
feihua1完成签到 ,获得积分10
28秒前
大轩完成签到 ,获得积分10
29秒前
miemie66完成签到,获得积分10
30秒前
31秒前
Sun1c7完成签到,获得积分10
31秒前
大仁哥完成签到,获得积分10
31秒前
qqy完成签到,获得积分10
32秒前
失眠的香菇完成签到 ,获得积分10
34秒前
机灵的笼包完成签到,获得积分10
34秒前
兔子发布了新的文献求助10
35秒前
ohwhale完成签到 ,获得积分10
36秒前
chaotianjiao完成签到 ,获得积分10
37秒前
阳光的耳机完成签到,获得积分10
38秒前
K珑完成签到,获得积分10
38秒前
Solar energy完成签到,获得积分10
40秒前
鲤鱼青雪发布了新的文献求助10
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022