A Machine Learning approach to reconstruct cloudy affected vegetation indices imagery via data fusion from Sentinel-1 and Landsat 8

归一化差异植被指数 随机森林 遥感 植被(病理学) 合成孔径雷达 增强植被指数 传感器融合 环境科学 土地覆盖 多元统计 计算机科学 人工智能 机器学习 植被指数 气候变化 地质学 土地利用 工程类 土木工程 病理 海洋学 医学
作者
Erli Pinto dos Santos,Demétrius David da Silva,Cibele Hummel do Amaral,Elpídio Inácio Fernandes Filho,Rafael Luís Silva Dias
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106753-106753 被引量:28
标识
DOI:10.1016/j.compag.2022.106753
摘要

• A machine learning based method is proposed to fusion optical and radar images. • Radar vegetation observations were suitable to predict optical vegetation indices. • Random forest algorithm showed best performance in predicting vegetation indices. • Random forest models reconstructed vegetation indices images affected by clouds. A way to reconstruct optical sensor-derived images allowing cloud-free vegetation monitoring is proposed in this paper. The motivation is the influence that clouds have on optical remote sensing of tropical regions, which hinders Earth observation systems because their presence reduces imaging frequency. To circumvent that problem, a machine learning model-based integration methodology for the fusion of Landsat 8 and Sentinel-1 data is proposed herein. Sentinel-1 constellation has mounted Synthetic aperture radar (SAR) sensors are used because the imaging is not affected by clouds due to microwave spectrum characteristics. To study the problem and predict both the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), three algorithms were selected: multivariate linear regression, multivariate adaptive regression splines, and random forest (RF). Two testing strategies were also chosen: k-Fold cross-validation for hyperparameter tuning of the model and holdout testing to assess the generalization ability of the model. The SAR covariables were employed to feed the algorithms, including selected SAR vegetation indices; in addition, environmental data, such as land use and land cover (LULC), the date, and position of the samples were used. The predictions from the NDVI and EVI produced good results, namely, similar Willmott’s agreement index (d) values that ranged from ∼0.64 to 0.96. The best-fitted model was the RF, which was used to reconstruct the NDVI images and produced good results that agreed well with the predictions (d index from 0.58 to 0.87) and spatial patterns. The results obtained show that the integration of radar and environmental covariables with optical vegetation indices can allow vegetation monitoring that is free of gaps due to clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布布发布了新的文献求助10
刚刚
Zhang发布了新的文献求助10
1秒前
qinqin发布了新的文献求助10
2秒前
顾夏包发布了新的文献求助30
2秒前
钰宁发布了新的文献求助10
2秒前
NexusExplorer应助ZZZ采纳,获得10
3秒前
4秒前
顺心书琴完成签到,获得积分10
4秒前
习习应助Nifeng采纳,获得10
4秒前
mrmrer发布了新的文献求助10
4秒前
6秒前
MUSTer一一完成签到 ,获得积分10
6秒前
通通通完成签到,获得积分10
6秒前
6秒前
务实的菓完成签到 ,获得积分10
7秒前
似水流年完成签到,获得积分10
7秒前
An慧完成签到,获得积分10
7秒前
Hello应助阿金采纳,获得10
7秒前
7秒前
7秒前
9秒前
顾夏包完成签到,获得积分10
9秒前
小土豆发布了新的文献求助50
10秒前
科研通AI5应助跑在颖采纳,获得10
10秒前
追寻代真发布了新的文献求助10
11秒前
mrmrer完成签到,获得积分20
11秒前
11秒前
11秒前
毛慢慢发布了新的文献求助10
12秒前
12秒前
今天不学习明天变垃圾完成签到,获得积分10
12秒前
13秒前
13秒前
布布完成签到,获得积分10
14秒前
一独白发布了新的文献求助10
14秒前
周周完成签到 ,获得积分10
14秒前
淡然完成签到,获得积分10
15秒前
明理小土豆完成签到,获得积分10
15秒前
刘国建郭菱香完成签到,获得积分10
15秒前
嘤嘤嘤完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762