亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clustering-Guided Pairwise Metric Triplet Loss for Person Reidentification

公制(单位) 欧几里德距离 成对比较 聚类分析 离群值 计算机科学 水准点(测量) 余弦相似度 相似性(几何) 模式识别(心理学) 算法 数据挖掘 数学 人工智能 运营管理 大地测量学 地理 经济 图像(数学)
作者
Weiyu Zeng,Tianlei Wang,Jiuwen Cao,Jianzhong Wang,Huanqiang Zeng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (16): 15150-15160 被引量:7
标识
DOI:10.1109/jiot.2022.3147950
摘要

Most of the loss functions proposed for person reidentification (Re-ID) are expected to be easy to deploy, efficiently improve network performance, and will not introduce redundant parameters. This study proposes a no-parameter and generic clustering-guided pairwise metric triplet (CPM-Triplet) loss based on the hard sample mining triplet loss for the metric learning loss. CPM-Triplet loss deploys two metrics: 1) the Euclidean metric and 2) the cosine metric, to complementarily improve the metric learning of the model. Paralleled to the Euclidean metric, the cosine metric quantifies the sample similarity in a different way to the Euclidean metric, which takes a different perspective to explore the distribution of samples. But the pairwise metric mainly improves the precision between dissimilar samples of the same label and could not solve the problem of excessive outliers. Therefore, the clustering-guided correction term was deployed to apply to all samples with the same label to mine the similarity in the samples, while weakening the influence of outliers in CPM-Triplet loss. Experiments conducted on four benchmark data sets show that the combination of the CPM-Triplet loss and the widely used Bag-of-Tricks baseline generally outperforms the baseline and numerous state-of-the-art methods studied in this article. The source code would be available at https://github.com/weiyu-zeng/CPM-Triplet-loss .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
andrele发布了新的文献求助10
10秒前
32秒前
58秒前
1分钟前
科研通AI6应助白华苍松采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
明理丹烟发布了新的文献求助20
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
andrele完成签到,获得积分10
2分钟前
坚定的小蘑菇完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
天天快乐应助徐甜采纳,获得10
2分钟前
冷酷的苗条完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
满意的西牛完成签到,获得积分10
2分钟前
Jasper应助明理丹烟采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
舒适笑天发布了新的文献求助10
2分钟前
兴奋的菠萝完成签到,获得积分10
2分钟前
徐甜完成签到 ,获得积分10
2分钟前
3分钟前
徐甜发布了新的文献求助10
3分钟前
舒适笑天完成签到,获得积分20
3分钟前
深情安青应助艺玲采纳,获得10
3分钟前
3分钟前
艺玲完成签到,获得积分10
3分钟前
徐甜发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509593
求助须知:如何正确求助?哪些是违规求助? 4604436
关于积分的说明 14489773
捐赠科研通 4539232
什么是DOI,文献DOI怎么找? 2487386
邀请新用户注册赠送积分活动 1469853
关于科研通互助平台的介绍 1442062