Denitrification performance of sulfur-based autotrophic denitrification and biomass‑sulfur-based mixotrophic denitrification in solid-phase denitrifying reactors using novel composite filters

反硝化 反硝化细菌 硝酸盐 自养 化学 生物量(生态学) 环境化学 异养 硫黄 硫酸盐 流出物 环境工程 制浆造纸工业 环境科学 生态学 氮气 生物 细菌 工程类 有机化学 遗传学
作者
Baorui Liang,Feiyu Kang,Yao Wang,Kuo Zhang,Youzhao Wang,Sai Yao,Zhenning Lyu,Tong Zhu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:823: 153826-153826 被引量:28
标识
DOI:10.1016/j.scitotenv.2022.153826
摘要

Both the elemental sulfur-based autotrophic denitrification (ESAD) and the biomass‑sulfur-based mixotrophic (simultaneous autotrophic and heterotrophic) denitrification processes (BSMD) are efficient methods for removing nitrate from wastewater. However, a comparative analysis of the denitrification capacity of the BSMD and ESAD in the packed bed reactors is still lacking. In this paper, corncob powder was selected as the biomass source to prepare biomass‑sulfur-based composite filter (BSCF) for the BSMD process. The denitrification performances of the three identical lab-scale bioreactors packed with varying elemental sulfur-based composite filters (ESCFs) were compared under varying loading conditions, and the optimal ESCF of the ESAD system was 2:1 by weight ratio of sulfur powder to shell powder. In pilot-scale experiments, the results showed that BSCF could decrease the sulfate productivity and gave better denitrification performance than the ESCF with the optimal nitrate removal rate (NRR) of 504 ± 12.3 mg NO3--N·L-1·d-1. In addition, the two-stage flushing strategy (for the removal of aged sludge) can effectively improve the denitrification capacity, while the denitrification will be inhibited when the influent dissolved oxygen concentration was higher than 4.5 mg L-1. Moreover, the heterotrophs and autotrophs were abundant in the reactors. Over time, the abundance of autotrophs increased while that of heterotrophs decreased. Overall, BSCF could be a promising and economic technology to improve the effluent quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lixoii发布了新的文献求助20
1秒前
豌豆射手发布了新的文献求助10
2秒前
科研通AI2S应助k7采纳,获得10
2秒前
wszldmn完成签到,获得积分10
2秒前
坚定的亦绿完成签到,获得积分10
3秒前
3秒前
yurh完成签到,获得积分10
3秒前
小朋友完成签到,获得积分10
4秒前
华仔应助小王采纳,获得10
4秒前
彭于晏应助乔乔采纳,获得10
4秒前
4秒前
1199完成签到,获得积分10
4秒前
4秒前
南瓜完成签到 ,获得积分10
5秒前
eric曾完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
韦威风完成签到,获得积分10
8秒前
请叫我风吹麦浪应助cc采纳,获得30
8秒前
所所应助Ll采纳,获得10
8秒前
阳光的道消完成签到,获得积分10
9秒前
9秒前
9秒前
豌豆射手完成签到,获得积分10
10秒前
10秒前
桑桑发布了新的文献求助10
10秒前
领导范儿应助幸福胡萝卜采纳,获得10
11秒前
明理的小甜瓜完成签到,获得积分10
12秒前
12秒前
33333完成签到,获得积分20
12秒前
12秒前
12秒前
756发布了新的文献求助10
12秒前
13秒前
科研通AI5应助GHOST采纳,获得10
13秒前
13秒前
罗实完成签到,获得积分10
14秒前
科研通AI2S应助k7采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762