清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling terrestrial net ecosystem exchange using machine learning techniques based on flux tower measurements

随机森林 均方误差 环境科学 支持向量机 梯度升压 决策树 统计 计算机科学 数学 人工智能 机器学习 遥感 地质学
作者
Hassan Abbasian,Eisa Solgi,Seyed Mohsen Hosseini,Seyed Hossein Kia
出处
期刊:Ecological Modelling [Elsevier]
卷期号:466: 109901-109901 被引量:23
标识
DOI:10.1016/j.ecolmodel.2022.109901
摘要

• Random forest (RF) has the best performance statistically compared to the SVM, GBM, DT and MLR models. • Deciduous broadleaf forest (DBF) shows the lowest uncertainty in terms of NEE of CO 2 estimation. • Soil temperature plays a critical role in modeling improvement across the grasslands. • The highest uncertainty occurs during the maturity period in all PFTs. Identifying the complex relationships of Net Ecosystem Exchange (NEE) of CO 2 , as an underlying factor of land surface, and atmosphere interactions is extremely important to the dynamic of carbon fluxes. Assessment of the model-based estimation of land-atmosphere carbon flux across various plant functional types (PFTs) can support the accurate identification of the carbon cycle and the adaptation and mitigation of climate change programs. Five different machine learning methods named Multiple Linear Regression (MLR), Support Vector Machine (SVM), Decision Tree (DT), Gradient Boosting Machine (GBM) and Random Forest (RF) were used to predict daily NEE magnitude. In this study, 24 sites classified into four PFTs of Deciduous Broadleaf Forest (DBF), Evergreen Needle-leaf Forest (ENF), Mixed Forest (MF) and Grassland (GRA) were examined through ground-based flux tower data. The numbers of sites were six, four, six and eight for DBF, ENF, MF and GRA respectively, while measurement periods varied from two to thirteen years. The model calibration and validation were carried out using 70%and 30% of the data-set, respectively. The models’ performances were assessed using statistical indices including the coefficient of determination (R 2 ), the Nash-Sutcliffe efficiency (NSE), bias error (Bias) and root mean square error (RMSE) through Python software. Based on statistical indices, the models showed different levels of capability when analyzing data from the DBF, ENF, MF and GRA sites. Among the models, RF showed the best performance, MLR showed the poorest performance, while SVM, GBM and DT models all had moderate responses. The effect of both air and soil temperatures, as the state variables, were examined to assess model performance. Whether soil temperature is included in the model plays a more important role in the performance of the models in grassland than in forest. Soil temperature inclusion, as an input variable, improved the models’ performance about 14% in grassland, while it improved performance 2.4%, 2.4% and 3.5% in ENF, MF and DBF, respectively. Finally, to assess the models' performances, the NEE behavior in terms of over- or under- estimation was investigated across each PFT and over various phenological periods. The results indicate that high uncertainty occurs between the 140th and 220th days of the Julian calendar for forested areas and between the 120th and 210thdays for grassland.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
大个应助内向的绿采纳,获得10
13秒前
打打应助Hancen采纳,获得10
17秒前
NexusExplorer应助Z先生采纳,获得10
29秒前
37秒前
Z先生发布了新的文献求助10
41秒前
Z先生完成签到,获得积分20
50秒前
1分钟前
内向的绿发布了新的文献求助10
1分钟前
1分钟前
端庄洪纲完成签到 ,获得积分10
1分钟前
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
科研通AI6.1应助内向的绿采纳,获得10
1分钟前
不如看海完成签到 ,获得积分10
2分钟前
2分钟前
小珂完成签到 ,获得积分10
2分钟前
2分钟前
内向的绿发布了新的文献求助10
2分钟前
辣小扬完成签到 ,获得积分10
2分钟前
科研通AI6.1应助内向的绿采纳,获得10
2分钟前
3分钟前
Hancen发布了新的文献求助10
3分钟前
Hancen完成签到,获得积分10
3分钟前
Sunny完成签到,获得积分10
3分钟前
3分钟前
内向的绿发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6.1应助内向的绿采纳,获得10
3分钟前
4分钟前
大胆的碧菡完成签到,获得积分10
4分钟前
4分钟前
内向的绿发布了新的文献求助10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
大医仁心完成签到 ,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773003
求助须知:如何正确求助?哪些是违规求助? 5605278
关于积分的说明 15430310
捐赠科研通 4905739
什么是DOI,文献DOI怎么找? 2639693
邀请新用户注册赠送积分活动 1587589
关于科研通互助平台的介绍 1542554