Modeling terrestrial net ecosystem exchange using machine learning techniques based on flux tower measurements

随机森林 每年落叶的 环境科学 支持向量机 常绿 决策树 统计 机器学习
作者
Hassan Abbasian,Eisa Solgi,Seyed Mohsen Hosseini,Seyed Hossein Kia
出处
期刊:Ecological Modelling [Elsevier]
卷期号:466: 109901-109901
标识
DOI:10.1016/j.ecolmodel.2022.109901
摘要

• Random forest (RF) has the best performance statistically compared to the SVM, GBM, DT and MLR models. • Deciduous broadleaf forest (DBF) shows the lowest uncertainty in terms of NEE of CO 2 estimation. • Soil temperature plays a critical role in modeling improvement across the grasslands. • The highest uncertainty occurs during the maturity period in all PFTs. Identifying the complex relationships of Net Ecosystem Exchange (NEE) of CO 2 , as an underlying factor of land surface, and atmosphere interactions is extremely important to the dynamic of carbon fluxes. Assessment of the model-based estimation of land-atmosphere carbon flux across various plant functional types (PFTs) can support the accurate identification of the carbon cycle and the adaptation and mitigation of climate change programs. Five different machine learning methods named Multiple Linear Regression (MLR), Support Vector Machine (SVM), Decision Tree (DT), Gradient Boosting Machine (GBM) and Random Forest (RF) were used to predict daily NEE magnitude. In this study, 24 sites classified into four PFTs of Deciduous Broadleaf Forest (DBF), Evergreen Needle-leaf Forest (ENF), Mixed Forest (MF) and Grassland (GRA) were examined through ground-based flux tower data. The numbers of sites were six, four, six and eight for DBF, ENF, MF and GRA respectively, while measurement periods varied from two to thirteen years. The model calibration and validation were carried out using 70%and 30% of the data-set, respectively. The models’ performances were assessed using statistical indices including the coefficient of determination (R 2 ), the Nash-Sutcliffe efficiency (NSE), bias error (Bias) and root mean square error (RMSE) through Python software. Based on statistical indices, the models showed different levels of capability when analyzing data from the DBF, ENF, MF and GRA sites. Among the models, RF showed the best performance, MLR showed the poorest performance, while SVM, GBM and DT models all had moderate responses. The effect of both air and soil temperatures, as the state variables, were examined to assess model performance. Whether soil temperature is included in the model plays a more important role in the performance of the models in grassland than in forest. Soil temperature inclusion, as an input variable, improved the models’ performance about 14% in grassland, while it improved performance 2.4%, 2.4% and 3.5% in ENF, MF and DBF, respectively. Finally, to assess the models' performances, the NEE behavior in terms of over- or under- estimation was investigated across each PFT and over various phenological periods. The results indicate that high uncertainty occurs between the 140th and 220th days of the Julian calendar for forested areas and between the 120th and 210thdays for grassland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助DARKNESS采纳,获得10
3秒前
善学以致用应助威武冷雪采纳,获得10
5秒前
6秒前
高贵季节发布了新的文献求助10
7秒前
风趣秋白完成签到,获得积分10
8秒前
8秒前
半岛岛发布了新的文献求助10
9秒前
mochi发布了新的文献求助10
11秒前
科研通AI2S应助欢喜发卡采纳,获得10
11秒前
Solar energy发布了新的文献求助10
13秒前
懵懂的愫完成签到 ,获得积分10
13秒前
庸尘完成签到,获得积分10
14秒前
阳和启蛰完成签到,获得积分10
15秒前
Fjj完成签到,获得积分20
16秒前
李健应助无私的鸣凤采纳,获得30
17秒前
bkagyin应助mochi采纳,获得10
19秒前
20秒前
21秒前
可爱邓邓完成签到 ,获得积分10
22秒前
Karinaa发布了新的文献求助10
25秒前
11发布了新的文献求助10
26秒前
李健应助俭朴的世立采纳,获得10
26秒前
沐雨完成签到,获得积分20
27秒前
Liziqi823完成签到,获得积分10
27秒前
skyla1003完成签到 ,获得积分10
34秒前
36秒前
科研通AI2S应助牛诗悦采纳,获得10
41秒前
研友_aLjo9n完成签到,获得积分10
43秒前
43秒前
47秒前
47秒前
醉烟雨完成签到,获得积分10
47秒前
lcc应助东方天奇采纳,获得10
48秒前
陶醉的蜜蜂完成签到 ,获得积分10
49秒前
YanDongXu完成签到 ,获得积分10
51秒前
51秒前
52秒前
mochi发布了新的文献求助10
53秒前
56秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140431
求助须知:如何正确求助?哪些是违规求助? 2791320
关于积分的说明 7798479
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302008
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194