亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling terrestrial net ecosystem exchange using machine learning techniques based on flux tower measurements

随机森林 均方误差 环境科学 支持向量机 梯度升压 决策树 统计 计算机科学 数学 人工智能 机器学习 遥感 地质学
作者
Hassan Abbasian,Eisa Solgi,Seyed Mohsen Hosseini,Seyed Hossein Kia
出处
期刊:Ecological Modelling [Elsevier]
卷期号:466: 109901-109901 被引量:23
标识
DOI:10.1016/j.ecolmodel.2022.109901
摘要

• Random forest (RF) has the best performance statistically compared to the SVM, GBM, DT and MLR models. • Deciduous broadleaf forest (DBF) shows the lowest uncertainty in terms of NEE of CO 2 estimation. • Soil temperature plays a critical role in modeling improvement across the grasslands. • The highest uncertainty occurs during the maturity period in all PFTs. Identifying the complex relationships of Net Ecosystem Exchange (NEE) of CO 2 , as an underlying factor of land surface, and atmosphere interactions is extremely important to the dynamic of carbon fluxes. Assessment of the model-based estimation of land-atmosphere carbon flux across various plant functional types (PFTs) can support the accurate identification of the carbon cycle and the adaptation and mitigation of climate change programs. Five different machine learning methods named Multiple Linear Regression (MLR), Support Vector Machine (SVM), Decision Tree (DT), Gradient Boosting Machine (GBM) and Random Forest (RF) were used to predict daily NEE magnitude. In this study, 24 sites classified into four PFTs of Deciduous Broadleaf Forest (DBF), Evergreen Needle-leaf Forest (ENF), Mixed Forest (MF) and Grassland (GRA) were examined through ground-based flux tower data. The numbers of sites were six, four, six and eight for DBF, ENF, MF and GRA respectively, while measurement periods varied from two to thirteen years. The model calibration and validation were carried out using 70%and 30% of the data-set, respectively. The models’ performances were assessed using statistical indices including the coefficient of determination (R 2 ), the Nash-Sutcliffe efficiency (NSE), bias error (Bias) and root mean square error (RMSE) through Python software. Based on statistical indices, the models showed different levels of capability when analyzing data from the DBF, ENF, MF and GRA sites. Among the models, RF showed the best performance, MLR showed the poorest performance, while SVM, GBM and DT models all had moderate responses. The effect of both air and soil temperatures, as the state variables, were examined to assess model performance. Whether soil temperature is included in the model plays a more important role in the performance of the models in grassland than in forest. Soil temperature inclusion, as an input variable, improved the models’ performance about 14% in grassland, while it improved performance 2.4%, 2.4% and 3.5% in ENF, MF and DBF, respectively. Finally, to assess the models' performances, the NEE behavior in terms of over- or under- estimation was investigated across each PFT and over various phenological periods. The results indicate that high uncertainty occurs between the 140th and 220th days of the Julian calendar for forested areas and between the 120th and 210thdays for grassland.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
30秒前
欢呼靳完成签到 ,获得积分10
30秒前
32秒前
43秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
瘦瘦以亦发布了新的文献求助10
1分钟前
小马甲应助瘦瘦以亦采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小左完成签到,获得积分20
1分钟前
1分钟前
小左发布了新的文献求助10
1分钟前
1分钟前
ooops完成签到,获得积分10
2分钟前
2分钟前
SUNny完成签到 ,获得积分10
2分钟前
无花果应助瓜兮兮CYY采纳,获得10
2分钟前
2分钟前
2分钟前
Lan完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
ooops关注了科研通微信公众号
3分钟前
3分钟前
刘言发布了新的文献求助20
3分钟前
儒雅的十八完成签到,获得积分10
3分钟前
瓜兮兮CYY发布了新的文献求助10
3分钟前
kukudou2发布了新的文献求助30
3分钟前
ooops发布了新的文献求助10
3分钟前
顾矜应助杰老爷采纳,获得10
3分钟前
方沅完成签到,获得积分10
3分钟前
3分钟前
刘言完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4860155
关于积分的说明 15107455
捐赠科研通 4822794
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535928
关于科研通互助平台的介绍 1494160