Survival prediction on intrahepatic cholangiocarcinoma with histomorphological analysis on the whole slide images

肝内胆管癌 病理 基质 阶段(地层学) 医学 肿瘤微环境 生存分析 癌症 肿瘤科 生物 内科学 免疫组织化学 古生物学
作者
Jiawei Xie,Xiaohong Pu,Jian He,Yudong Qiu,Cheng Lu,Wei Gao,Xiangxue Wang,Haoda Lu,Jiong Shi,Yuemei Xu,Anant Madabhushi,Xiangshan Fan,Jun Chen,Jun Xu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105520-105520 被引量:16
标识
DOI:10.1016/j.compbiomed.2022.105520
摘要

Intrahepatic cholangiocarcinoma (ICC) is cancer that originates from the liver's secondary ductal epithelium or branch. Due to the lack of early-stage clinical symptoms and very high mortality, the 5-year postoperative survival rate is only about 35%. A critical step to improve patients' survival is accurately predicting their survival status and giving appropriate treatment. The tumor microenvironment of ICC is the immediate environment on which the tumor cell growth depends. The differentiation of tumor glands, the stroma status, and the tumor-infiltrating lymphocytes in such environments are strictly related to the tumor progress. It is crucial to develop a computerized system for characterizing the tumor environment. This work aims to develop the quantitative histomorphological features that describe lymphocyte density distribution at the cell level and the different components at the tumor's tissue level in H&E-stained whole slide images (WSIs). The goal is to explore whether these features could stratify patients' survival. This study comprised of 127 patients diagnosed with ICC after surgery, where 78 cases were randomly chosen as the modeling set, and the rest of the 49 cases were testing set. Deep learning-based models were developed for tissue segmentation and lymphocyte detection in the WSIs. A total of 107-dimensional features, including different type of graph features on the WSIs were extracted by exploring the histomorphological patterns of these identified tumor tissue and lymphocytes. The top 3 discriminative features were chosen with the mRMR algorithm via 5-fold cross-validation to predict the patient's survival. The model's performance was evaluated on the independent testing set, which achieved an AUC of 0.6818 and the log-rank test p-value of 0.03. The Cox multivariable test was used to control the TNM staging, γ-Glutamytransferase, and the Peritumoral Glisson's Sheath Invasion. It showed that our model could independently predict survival risk with a p-value of 0.048 and HR (95% confidence interval) of 2.90 (1.01-8.32). These results indicated that the composition in tissue-level and global arrangement of lymphocytes in the cell-level could distinguish ICC patients' survival risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thchiang发布了新的文献求助30
3秒前
暖羊羊Y完成签到 ,获得积分10
6秒前
务实的初蝶完成签到 ,获得积分10
6秒前
CYYDNDB完成签到 ,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
就好完成签到 ,获得积分10
15秒前
liangguangyuan完成签到 ,获得积分10
20秒前
chichenglin完成签到 ,获得积分0
21秒前
搞怪的白云完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
lorentzh完成签到,获得积分10
23秒前
小成完成签到 ,获得积分10
24秒前
32秒前
田田完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
浮游应助科研通管家采纳,获得10
45秒前
胡萝卜完成签到 ,获得积分10
57秒前
朴素海亦完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
坚强的蔷薇薇完成签到 ,获得积分10
1分钟前
超越俗尘完成签到,获得积分10
1分钟前
Cell完成签到 ,获得积分10
1分钟前
噗愣噗愣地刚发芽完成签到 ,获得积分10
1分钟前
afterglow完成签到 ,获得积分10
1分钟前
酷炫的尔丝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SDS完成签到 ,获得积分10
1分钟前
zqy完成签到 ,获得积分10
1分钟前
1分钟前
载尘完成签到 ,获得积分10
1分钟前
酷炫觅双完成签到 ,获得积分10
1分钟前
thchiang发布了新的文献求助30
1分钟前
时代更迭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
yxrose完成签到,获得积分10
2分钟前
林好人完成签到 ,获得积分10
2分钟前
盟主完成签到 ,获得积分10
2分钟前
superspace完成签到 ,获得积分10
2分钟前
ru完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418544
求助须知:如何正确求助?哪些是违规求助? 4534237
关于积分的说明 14143298
捐赠科研通 4450452
什么是DOI,文献DOI怎么找? 2441265
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410399