Survival prediction on intrahepatic cholangiocarcinoma with histomorphological analysis on the whole slide images

肝内胆管癌 病理 基质 阶段(地层学) 医学 肿瘤微环境 生存分析 癌症 肿瘤科 生物 内科学 免疫组织化学 古生物学
作者
Jiawei Xie,Xiaohong Pu,Jian He,Yudong Qiu,Cheng Lu,Wei Gao,Xiangxue Wang,Haoda Lu,Jiong Shi,Yuemei Xu,Anant Madabhushi,Xiangshan Fan,Jun Chen,Jun Xu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105520-105520 被引量:9
标识
DOI:10.1016/j.compbiomed.2022.105520
摘要

Intrahepatic cholangiocarcinoma (ICC) is cancer that originates from the liver's secondary ductal epithelium or branch. Due to the lack of early-stage clinical symptoms and very high mortality, the 5-year postoperative survival rate is only about 35%. A critical step to improve patients' survival is accurately predicting their survival status and giving appropriate treatment. The tumor microenvironment of ICC is the immediate environment on which the tumor cell growth depends. The differentiation of tumor glands, the stroma status, and the tumor-infiltrating lymphocytes in such environments are strictly related to the tumor progress. It is crucial to develop a computerized system for characterizing the tumor environment. This work aims to develop the quantitative histomorphological features that describe lymphocyte density distribution at the cell level and the different components at the tumor's tissue level in H&E-stained whole slide images (WSIs). The goal is to explore whether these features could stratify patients' survival. This study comprised of 127 patients diagnosed with ICC after surgery, where 78 cases were randomly chosen as the modeling set, and the rest of the 49 cases were testing set. Deep learning-based models were developed for tissue segmentation and lymphocyte detection in the WSIs. A total of 107-dimensional features, including different type of graph features on the WSIs were extracted by exploring the histomorphological patterns of these identified tumor tissue and lymphocytes. The top 3 discriminative features were chosen with the mRMR algorithm via 5-fold cross-validation to predict the patient's survival. The model's performance was evaluated on the independent testing set, which achieved an AUC of 0.6818 and the log-rank test p-value of 0.03. The Cox multivariable test was used to control the TNM staging, γ-Glutamytransferase, and the Peritumoral Glisson's Sheath Invasion. It showed that our model could independently predict survival risk with a p-value of 0.048 and HR (95% confidence interval) of 2.90 (1.01-8.32). These results indicated that the composition in tissue-level and global arrangement of lymphocytes in the cell-level could distinguish ICC patients' survival risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aliime发布了新的文献求助10
1秒前
辛夷完成签到,获得积分10
2秒前
2秒前
2秒前
FartKing发布了新的文献求助10
3秒前
嗷嗷嗷发布了新的文献求助10
4秒前
科研通AI2S应助dll采纳,获得10
6秒前
Jewel_719完成签到,获得积分10
6秒前
五里雾发布了新的文献求助10
7秒前
8秒前
靖雁发布了新的文献求助10
8秒前
10秒前
13秒前
chen发布了新的文献求助10
14秒前
14秒前
14秒前
12345发布了新的文献求助10
14秒前
丘比特应助靖雁采纳,获得10
15秒前
酷波er应助霍凡白采纳,获得10
15秒前
eye关闭了eye文献求助
15秒前
16秒前
年轻水壶完成签到 ,获得积分10
17秒前
zzz完成签到,获得积分10
17秒前
林璇璇发布了新的文献求助10
17秒前
dd36发布了新的文献求助10
19秒前
12345完成签到,获得积分10
19秒前
20秒前
酷波er应助健壮的花生zzz采纳,获得10
22秒前
OldPeking关注了科研通微信公众号
23秒前
刘斌发布了新的文献求助30
26秒前
26秒前
27秒前
dd36完成签到,获得积分10
27秒前
Eric应助玲丫头采纳,获得10
28秒前
29秒前
FartKing发布了新的文献求助200
29秒前
霍凡白发布了新的文献求助10
30秒前
adong发布了新的文献求助10
33秒前
34秒前
聪明的鹤发布了新的文献求助30
34秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178237
求助须知:如何正确求助?哪些是违规求助? 2829236
关于积分的说明 7970619
捐赠科研通 2490615
什么是DOI,文献DOI怎么找? 1327709
科研通“疑难数据库(出版商)”最低求助积分说明 635314
版权声明 602904