Survival prediction on intrahepatic cholangiocarcinoma with histomorphological analysis on the whole slide images

肝内胆管癌 病理 基质 阶段(地层学) 医学 肿瘤微环境 生存分析 癌症 肿瘤科 生物 内科学 免疫组织化学 古生物学
作者
Jiawei Xie,Xiaohong Pu,Jian He,Yudong Qiu,Cheng Lu,Wei Gao,Xiangxue Wang,Haoda Lu,Jiong Shi,Yuemei Xu,Anant Madabhushi,Xiangshan Fan,Jun Chen,Jun Xu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105520-105520 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105520
摘要

Intrahepatic cholangiocarcinoma (ICC) is cancer that originates from the liver's secondary ductal epithelium or branch. Due to the lack of early-stage clinical symptoms and very high mortality, the 5-year postoperative survival rate is only about 35%. A critical step to improve patients' survival is accurately predicting their survival status and giving appropriate treatment. The tumor microenvironment of ICC is the immediate environment on which the tumor cell growth depends. The differentiation of tumor glands, the stroma status, and the tumor-infiltrating lymphocytes in such environments are strictly related to the tumor progress. It is crucial to develop a computerized system for characterizing the tumor environment. This work aims to develop the quantitative histomorphological features that describe lymphocyte density distribution at the cell level and the different components at the tumor's tissue level in H&E-stained whole slide images (WSIs). The goal is to explore whether these features could stratify patients' survival. This study comprised of 127 patients diagnosed with ICC after surgery, where 78 cases were randomly chosen as the modeling set, and the rest of the 49 cases were testing set. Deep learning-based models were developed for tissue segmentation and lymphocyte detection in the WSIs. A total of 107-dimensional features, including different type of graph features on the WSIs were extracted by exploring the histomorphological patterns of these identified tumor tissue and lymphocytes. The top 3 discriminative features were chosen with the mRMR algorithm via 5-fold cross-validation to predict the patient's survival. The model's performance was evaluated on the independent testing set, which achieved an AUC of 0.6818 and the log-rank test p-value of 0.03. The Cox multivariable test was used to control the TNM staging, γ-Glutamytransferase, and the Peritumoral Glisson's Sheath Invasion. It showed that our model could independently predict survival risk with a p-value of 0.048 and HR (95% confidence interval) of 2.90 (1.01-8.32). These results indicated that the composition in tissue-level and global arrangement of lymphocytes in the cell-level could distinguish ICC patients' survival risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小巧的如冬完成签到,获得积分10
1秒前
lxh完成签到,获得积分10
1秒前
1秒前
HEIKU应助谦让傲菡采纳,获得10
1秒前
舒涵关注了科研通微信公众号
1秒前
灰鹅发布了新的文献求助10
2秒前
可颂完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
国服懒羊羊完成签到,获得积分10
4秒前
领导范儿应助ZTT采纳,获得10
4秒前
moon发布了新的文献求助10
5秒前
小宇发布了新的文献求助10
5秒前
5秒前
Neon0524完成签到 ,获得积分10
5秒前
HEIKU应助颜绫采纳,获得50
6秒前
6秒前
Jiayou Zhang完成签到,获得积分10
6秒前
高高迎蓉发布了新的文献求助10
6秒前
徐霜完成签到 ,获得积分10
7秒前
DDXXC完成签到,获得积分10
7秒前
忧郁的续完成签到,获得积分20
7秒前
陈强发布了新的文献求助30
7秒前
wzg666完成签到,获得积分10
8秒前
8秒前
爆米花应助找不到采纳,获得10
8秒前
任性的梦菲应助圈圈采纳,获得30
8秒前
9秒前
Ava应助踏实的烙采纳,获得10
9秒前
10秒前
ChangSZ应助speedness采纳,获得10
10秒前
自由基不能聚合完成签到,获得积分10
10秒前
shone发布了新的文献求助10
11秒前
烟花应助yug采纳,获得10
11秒前
科研cc发布了新的文献求助10
11秒前
你仔细听发布了新的文献求助10
11秒前
路之遥兮发布了新的文献求助10
12秒前
一平发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672