Improving Automated Glioma Segmentation in Routine Clinical Use Through Artificial Intelligence-Based Replacement of Missing Sequences With Synthetic Magnetic Resonance Imaging Scans

分割 计算机科学 缺少数据 人工智能 流体衰减反转恢复 模式识别(心理学) 公制(单位) 磁共振成像 Sørensen–骰子系数 基本事实 深度学习 图像分割 医学 机器学习 放射科 经济 运营管理
作者
Marie Thomas,Florian Kofler,Lioba Grundl,Tom Finck,Hongwei Li,Claus Zimmer,Bjoern Menze,Benedikt Wiestler
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (3): 187-193 被引量:30
标识
DOI:10.1097/rli.0000000000000828
摘要

Although automated glioma segmentation holds promise for objective assessment of tumor biology and response, its routine clinical use is impaired by missing sequences, for example, due to motion artifacts. The aim of our study was to develop and validate a generative adversarial network for synthesizing missing sequences to allow for a robust automated segmentation.Our model was trained on data from The Cancer Imaging Archive (n = 238 WHO II-IV gliomas) to synthesize either missing FLAIR, T2-weighted, T1-weighted (T1w), or contrast-enhanced T1w images from available sequences, using a novel tumor-targeting loss to improve synthesis of tumor areas. We validated performance in a test set from both the REMBRANDT repository and our local institution (n = 68 WHO II-IV gliomas), using qualitative image appearance metrics, but also segmentation performance with state-of-the-art segmentation models. Segmentation of synthetic images was compared with 2 commonly used strategies for handling missing input data, entering a blank mask or copying an existing sequence.Across tumor areas and missing sequences, synthetic images generally outperformed both conventional approaches, in particular when FLAIR was missing. Here, for edema and whole tumor segmentation, we improved the Dice score, a common metric for evaluation of segmentation performance, by 12% and 11%, respectively, over the best conventional method. No method was able to reliably replace missing contrast-enhanced T1w images.Replacing missing nonenhanced magnetic resonance sequences via synthetic images significantly improves segmentation quality over most conventional approaches. This model is freely available and facilitates more widespread use of automated segmentation in routine clinical use, where missing sequences are common.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助20
1秒前
1秒前
和谐幻柏发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
ray发布了新的文献求助10
2秒前
清秀映秋发布了新的文献求助10
3秒前
刚睡醒发布了新的文献求助10
3秒前
3秒前
纯真电源发布了新的文献求助10
3秒前
苹果柜子完成签到,获得积分10
3秒前
zy3637完成签到,获得积分10
4秒前
葵小葵完成签到,获得积分10
4秒前
只只只完成签到,获得积分10
4秒前
fyw发布了新的文献求助10
5秒前
5秒前
sh完成签到,获得积分10
6秒前
6秒前
大个应助开放夜南采纳,获得10
6秒前
6秒前
KYG发布了新的文献求助10
7秒前
7秒前
星辰大海应助TOF采纳,获得10
7秒前
高高水发布了新的文献求助10
8秒前
8秒前
舍我其谁完成签到,获得积分10
8秒前
9秒前
9秒前
11秒前
11秒前
世间再无延毕完成签到,获得积分10
11秒前
12秒前
12秒前
CipherSage应助fyw采纳,获得10
12秒前
12秒前
12秒前
13秒前
小马甲应助崔雪峰采纳,获得10
13秒前
坦率白竹发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728