Improving Automated Glioma Segmentation in Routine Clinical Use Through Artificial Intelligence-Based Replacement of Missing Sequences With Synthetic Magnetic Resonance Imaging Scans

分割 计算机科学 缺少数据 人工智能 流体衰减反转恢复 模式识别(心理学) 公制(单位) 磁共振成像 Sørensen–骰子系数 基本事实 深度学习 图像分割 医学 机器学习 放射科 经济 运营管理
作者
Marie Thomas,Florian Kofler,Lioba Grundl,Tom Finck,Hongwei Li,Claus Zimmer,Bjoern Menze,Benedikt Wiestler
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (3): 187-193 被引量:30
标识
DOI:10.1097/rli.0000000000000828
摘要

Although automated glioma segmentation holds promise for objective assessment of tumor biology and response, its routine clinical use is impaired by missing sequences, for example, due to motion artifacts. The aim of our study was to develop and validate a generative adversarial network for synthesizing missing sequences to allow for a robust automated segmentation.Our model was trained on data from The Cancer Imaging Archive (n = 238 WHO II-IV gliomas) to synthesize either missing FLAIR, T2-weighted, T1-weighted (T1w), or contrast-enhanced T1w images from available sequences, using a novel tumor-targeting loss to improve synthesis of tumor areas. We validated performance in a test set from both the REMBRANDT repository and our local institution (n = 68 WHO II-IV gliomas), using qualitative image appearance metrics, but also segmentation performance with state-of-the-art segmentation models. Segmentation of synthetic images was compared with 2 commonly used strategies for handling missing input data, entering a blank mask or copying an existing sequence.Across tumor areas and missing sequences, synthetic images generally outperformed both conventional approaches, in particular when FLAIR was missing. Here, for edema and whole tumor segmentation, we improved the Dice score, a common metric for evaluation of segmentation performance, by 12% and 11%, respectively, over the best conventional method. No method was able to reliably replace missing contrast-enhanced T1w images.Replacing missing nonenhanced magnetic resonance sequences via synthetic images significantly improves segmentation quality over most conventional approaches. This model is freely available and facilitates more widespread use of automated segmentation in routine clinical use, where missing sequences are common.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心妍完成签到 ,获得积分10
刚刚
楊玖日完成签到 ,获得积分10
2秒前
萧水白应助科研通管家采纳,获得10
3秒前
毛豆应助科研通管家采纳,获得10
3秒前
Raymond应助科研通管家采纳,获得10
3秒前
Raymond应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得30
3秒前
科目三应助科研通管家采纳,获得10
3秒前
毛豆应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
索谓完成签到 ,获得积分10
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得50
4秒前
Raymond应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
碧蓝世界完成签到 ,获得积分10
6秒前
mrmaybe发布了新的文献求助10
6秒前
ljw199606完成签到,获得积分10
7秒前
10秒前
嗯哼应助landforall_23采纳,获得20
12秒前
Brocade发布了新的文献求助10
13秒前
华仔应助壮观以松采纳,获得10
13秒前
尉迟完成签到,获得积分10
13秒前
13秒前
朻安完成签到,获得积分10
14秒前
高111完成签到,获得积分10
15秒前
ljw199606发布了新的文献求助30
18秒前
Guo完成签到,获得积分10
22秒前
SHT应助苏诗兰采纳,获得10
23秒前
28秒前
30秒前
32秒前
33秒前
35秒前
超帅的遥完成签到,获得积分10
36秒前
KristenStewart完成签到,获得积分10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3317569
求助须知:如何正确求助?哪些是违规求助? 2949061
关于积分的说明 8544143
捐赠科研通 2625212
什么是DOI,文献DOI怎么找? 1436651
科研通“疑难数据库(出版商)”最低求助积分说明 665934
邀请新用户注册赠送积分活动 651882