氢气储存
合金
材料科学
氢
相(物质)
同种类的
氘
动力学同位素效应
化学工程
冶金
热力学
化学
原子物理学
有机化学
物理
工程类
作者
Zhendong Yao,Zhaoqing Liang,Xuezhang Xiao,Jiacheng Qi,Jiahuan He,Xu Huang,Huaqin Kou,Wenhua Luo,Changan Chen,Lixin Chen
标识
DOI:10.1016/j.renene.2022.01.086
摘要
Hydrogen isotope (deuterium and tritium) as a special form of hydrogen energy, its storage in an efficient and safe way has been paid more and more attention by researchers in recent years. ZrCo alloy is regarding as the one and only promising material for large-scale storage of hydrogen isotope. However, poor cycle life and inferior capacity retention restrict its engineering application. Herein, we propose a co-substitution strategy of Nb (for Zr) and Ni (for Co) in ZrCo alloy to overcome the defects. Significantly, Zr0.8Nb0.2Co0.8Ni0.2 alloy exhibits ultralong cycle life (97.6% retention) and remarkable capacity (2.42 H (f. u.)) in 100 cycles, which far exceeds all existing hydrogen isotope storage alloys (Pd, U and other ZrCo-based alloys). These outstanding performances are entirely revealed from two aspects: stable homogeneous structural phase transformation process of parent structure (Zr0.8Nb0.2Co0.8Ni0.2H0.3-B33 ↔ Zr0.8Nb0.2Co0.8Ni0.2H2.8-B33″) and ordered migration mechanism of H atom (layered and linear de-/intercalation). Our attractive insights into the ultralong cycle life of ZrCo-based alloys through homogeneous structural phase transformation will serve as a pioneer on cycle optimization in the field of hydrogen storage materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI