电解质
阳极
锂(药物)
材料科学
离子电导率
化学工程
复合数
快离子导体
法拉第效率
电极
纳米技术
复合材料
化学
工程类
内分泌学
物理化学
医学
作者
Qinfeng Zhang,Bin Yue,Chenglong Shao,Hong Shao,Lin Li,Xiangting Dong,Jinxian Wang,Wensheng Yu
标识
DOI:10.1016/j.cej.2022.136479
摘要
All-solid-state lithium batteries (ASSLBs) have become one of the most promising next-generation energy storage devices owing to their high energy density and inherent safety. However, the uneven growth of lithium dendrites and large interface impedance between electrolyte and electrode easily lead to low coulombic efficiency and fast capacity fading. Here, we design and construct a novel Janus-structured composite solid electrolyte, viz. I2-PEO-LiTFSI (IP)/Li6.4La3Zr2Al0.2O12(LLZAO)-PEO-LiTFSI (LLP) (abbreviated as IP/LLP) for ASSLBs. The double-layer electrolyte closely contacts with Li anode with a flexible IP layer facing the Li anode, reducing the interfacial resistance and in-suit generating a stable SEI film. The SEI film is mainly composed of LiI with high ionic conductivity, which can effectively inhibit lithium dendrites, even if lithium dendrites accidentally insert into the electrolyte, they will also be swallowed by I2 loaded in the IP layer. Hence, such “double insurance” mechanism for inhibiting lithium dendrites is successfully realized, and the Li symmetric cell displays long-term stability at a current density of 0.2 mA cm−2 for 2000 h. Meanwhile, the assembled Li||IP/LLP||LiFePO4 all-solid-state battery still has a discharge specific capacity of 146.20 mAh g−1 after 500 cycles with a capacity decay rate of 0.024 % per cycle at 0.2 C, exhibiting superior long cycling stability. Afterwards, we also prove the creatively designed and prepared IP layer is of universality to suit for many composite solid electrolytes. The new findings show that Janus-structured composite solid electrolyte has potential to be a high-performance electrolyte for ASSLBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI