Suppression of lithium dendrites in all-solid-state lithium batteries by using a Janus-structured composite solid electrolyte

电解质 阳极 锂(药物) 材料科学 离子电导率 化学工程 复合数 快离子导体 法拉第效率 电极 纳米技术 复合材料 化学 工程类 内分泌学 物理化学 医学
作者
Qinfeng Zhang,Bin Yue,Chenglong Shao,Hong Shao,Lin Li,Xiangting Dong,Jinxian Wang,Wensheng Yu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:443: 136479-136479 被引量:23
标识
DOI:10.1016/j.cej.2022.136479
摘要

All-solid-state lithium batteries (ASSLBs) have become one of the most promising next-generation energy storage devices owing to their high energy density and inherent safety. However, the uneven growth of lithium dendrites and large interface impedance between electrolyte and electrode easily lead to low coulombic efficiency and fast capacity fading. Here, we design and construct a novel Janus-structured composite solid electrolyte, viz. I2-PEO-LiTFSI (IP)/Li6.4La3Zr2Al0.2O12(LLZAO)-PEO-LiTFSI (LLP) (abbreviated as IP/LLP) for ASSLBs. The double-layer electrolyte closely contacts with Li anode with a flexible IP layer facing the Li anode, reducing the interfacial resistance and in-suit generating a stable SEI film. The SEI film is mainly composed of LiI with high ionic conductivity, which can effectively inhibit lithium dendrites, even if lithium dendrites accidentally insert into the electrolyte, they will also be swallowed by I2 loaded in the IP layer. Hence, such “double insurance” mechanism for inhibiting lithium dendrites is successfully realized, and the Li symmetric cell displays long-term stability at a current density of 0.2 mA cm−2 for 2000 h. Meanwhile, the assembled Li||IP/LLP||LiFePO4 all-solid-state battery still has a discharge specific capacity of 146.20 mAh g−1 after 500 cycles with a capacity decay rate of 0.024 % per cycle at 0.2 C, exhibiting superior long cycling stability. Afterwards, we also prove the creatively designed and prepared IP layer is of universality to suit for many composite solid electrolytes. The new findings show that Janus-structured composite solid electrolyte has potential to be a high-performance electrolyte for ASSLBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
马尼拉发布了新的文献求助10
1秒前
CodeCraft应助dildil采纳,获得10
1秒前
1秒前
cyanpomelo完成签到 ,获得积分10
2秒前
2秒前
微笑高山完成签到 ,获得积分10
2秒前
文献查找发布了新的文献求助10
2秒前
加油完成签到,获得积分20
3秒前
Sunrise发布了新的文献求助10
3秒前
tabor发布了新的文献求助10
3秒前
唐妮完成签到,获得积分10
3秒前
啵清啵完成签到,获得积分10
4秒前
4秒前
莉莉发布了新的文献求助10
4秒前
5秒前
NexusExplorer应助平常的雁凡采纳,获得10
5秒前
Silverexile完成签到,获得积分10
6秒前
6秒前
唠叨的曼易完成签到,获得积分10
6秒前
Ymj关闭了Ymj文献求助
7秒前
木木雨完成签到,获得积分10
7秒前
7秒前
Harlotte发布了新的文献求助20
7秒前
LINxu发布了新的文献求助10
7秒前
今后应助加油采纳,获得10
7秒前
moonlight发布了新的文献求助10
8秒前
IMkily完成签到,获得积分10
9秒前
深情安青应助sunzhiyu233采纳,获得10
9秒前
9秒前
9秒前
sss发布了新的文献求助20
10秒前
氨基酸发布了新的文献求助30
11秒前
11秒前
11秒前
白菜发布了新的文献求助10
11秒前
文献查找完成签到,获得积分10
12秒前
浅色墨水完成签到,获得积分10
12秒前
研友_VZG7GZ应助xxx采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759