已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PaLM: Scaling Language Modeling with Pathways

计算机科学 语言模型 人工智能 水准点(测量) 缩放比例 任务(项目管理) 机器学习 多样性(控制论) 变压器 自然语言理解 深度学习 自然语言处理 自然语言 物理 量子力学 数学 经济 电压 大地测量学 管理 地理 几何学
作者
Aakanksha Chowdhery,Sharan Narang,Jacob Devlin,Maarten Bosma,Gaurav Mishra,Adam Roberts,Paul Barham,Hyung Won Chung,Charles Sutton,Sebastian Gehrmann,Parker Schuh,Kensen Shi,Sasha Tsvyashchenko,Joshua Maynez,Abhishek S. Rao,Parker Barnes,Yi Tay,Noam Shazeer,Vinodkumar Prabhakaran,Emily Reif,Nan Du,Ben Hutchinson,Reiner Pope,James T. Bradbury,Jacob Austin,Michael Isard,Guy Gur-Ari,Pengcheng Yin,Toju Duke,Anselm Levskaya,Sanjay Ghemawat,Sunipa Dev,Henryk Michalewski,Xavier García,Vedant Misra,Kevin Robinson,Liam Fedus,Denny Zhou,Daphne Ippolito,David Luan,Hyeontaek Lim,Barret Zoph,Alexander Spiridonov,Ryan Sepassi,D. Dohan,Shivani Agrawal,Mark Omernick,Andrew M. Dai,Thanumalayan Sankaranarayana Pillai,Marie Pellat,Aitor Lewkowycz,Érica Rodrigues Moreira,Rewon Child,Oleksandr Polozov,Katherine Lee,Zongwei Zhou,Xuezhi Wang,Brennan Saeta,Mark Díaz,Orhan Fırat,Michele Catasta,Jason Lee,Kathy Meier-Hellstern,Douglas Eck,Jeff Dean,Slav Petrov,Noah Fiedel
出处
期刊:Cornell University - arXiv 被引量:1724
标识
DOI:10.48550/arxiv.2204.02311
摘要

Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ding应助liuyu采纳,获得10
2秒前
薛薛@发布了新的文献求助10
3秒前
3秒前
春野花枝完成签到,获得积分10
3秒前
情怀应助Echo采纳,获得10
4秒前
张嘚嘚发布了新的文献求助10
4秒前
稚祎完成签到,获得积分10
5秒前
5秒前
5秒前
Hello应助ruuuu采纳,获得10
6秒前
在水一方应助氮气会飞采纳,获得10
7秒前
7秒前
盛夏如花发布了新的文献求助30
8秒前
深情安青应助ardejiang采纳,获得10
9秒前
9秒前
12秒前
伶俐惜萱发布了新的文献求助10
12秒前
少帅的科研路完成签到,获得积分10
13秒前
游戏人间发布了新的文献求助10
15秒前
16秒前
在水一方应助KEyanba采纳,获得10
18秒前
华仔应助重要手机采纳,获得30
18秒前
赘婿应助犹豫靖儿采纳,获得10
19秒前
蓝色的云完成签到 ,获得积分10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
20秒前
藤椒辣鱼应助科研通管家采纳,获得10
20秒前
藤椒辣鱼应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
思源应助伶俐惜萱采纳,获得10
21秒前
氮气会飞发布了新的文献求助10
21秒前
23秒前
24秒前
liuyu完成签到,获得积分20
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466581
求助须知:如何正确求助?哪些是违规求助? 3059363
关于积分的说明 9066062
捐赠科研通 2749840
什么是DOI,文献DOI怎么找? 1508739
科研通“疑难数据库(出版商)”最低求助积分说明 697030
邀请新用户注册赠送积分活动 696858