Identifying neuroimaging biomarkers of major depressive disorder from cortical hemodynamic responses using machine learning approaches

支持向量机 人工智能 重性抑郁障碍 机器学习 计算机科学 试验装置 神经影像学 交叉验证 口语流利性测试 生物标志物 认知 医学 神经心理学 精神科 生物化学 化学
作者
Zhifei Li,Roger S. McIntyre,Syeda Fabeha Husain,Roger Ho,Bach Xuan Tran,Hien Thu Nguyen,Shuenn‐Chiang Soo,Cyrus S. H. Ho,Nanguang Chen
出处
期刊:EBioMedicine [Elsevier]
卷期号:79: 104027-104027 被引量:25
标识
DOI:10.1016/j.ebiom.2022.104027
摘要

Early diagnosis of major depressive disorder (MDD) could enable timely interventions and effective management which subsequently improve clinical outcomes. However, quantitative and objective assessment tools for the suspected cases who present with depressive symptoms have not been fully established.Based on a large-scale dataset (n = 363 subjects) collected with functional near-infrared spectroscopy (fNIRS) measurements during the verbal fluency task (VFT), this study proposed a data representation method for extracting spatiotemporal characteristics of NIRS signals, which emerged as candidate predictors in a two-phase machine learning framework to detect distinctive biomarkers for MDD. Supervised classifiers (e.g., support vector machine (SVM), k-nearest neighbors (KNN)) cooperated with cross-validation were implemented to evaluate the predictive capability of selected features in a training set. Another test set that was not involved in developing the algorithms enabled the independent assessment of the model's generalization.For the classification with the optimal fusion features, the SVM classifier achieved the highest accuracy of 75.6% ± 4.7% in the nested cross-validation, and the correct prediction rate of 78.0% with a sensitivity of 75.0% and a specificity of 81.4% in the test set. Moreover, the multiway ANOVA test on clinical and demographic factors confirmed that twenty out of 39 optimal features were significantly correlated with the MDD-distinctive consequence.The abnormal prefrontal activity of MDD may be quantified as diminished relative intensity and inappropriate activation timing of hemodynamic response, resulting in an objectively measurable biomarker for assessing cognitive deficits and screening MDD at the early stage.This study was funded by NUS iHeathtech Other Operating Expenses (R-722-000-004-731).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
从容芮应助嘉心糖采纳,获得200
4秒前
5秒前
LL爱读书发布了新的文献求助10
5秒前
阳光盛男完成签到,获得积分10
6秒前
怒古瑟哟发布了新的文献求助10
8秒前
丰知然应助sunliying采纳,获得10
9秒前
东哥发布了新的文献求助10
9秒前
9秒前
11秒前
lgj发布了新的文献求助10
12秒前
xyz应助dodo采纳,获得30
12秒前
12秒前
for_abSCI完成签到,获得积分10
13秒前
酷波er应助明日之影采纳,获得10
13秒前
15秒前
情怀应助Ash采纳,获得10
15秒前
LuoYR@SZU发布了新的文献求助10
17秒前
leiyang49完成签到 ,获得积分10
17秒前
Damon发布了新的文献求助10
19秒前
20秒前
周蜜蜜关注了科研通微信公众号
21秒前
21秒前
丰知然应助腼腆的立诚采纳,获得10
21秒前
23秒前
完美芹完成签到,获得积分10
24秒前
Tree完成签到 ,获得积分10
24秒前
东哥完成签到,获得积分10
24秒前
25秒前
桐桐应助七栀采纳,获得10
26秒前
28秒前
黑痴完成签到,获得积分10
29秒前
30秒前
许瑞杰完成签到,获得积分20
31秒前
从容芮应助嘉心糖采纳,获得200
31秒前
31秒前
LiaoPiggg发布了新的文献求助10
32秒前
32秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3451800
求助须知:如何正确求助?哪些是违规求助? 3047189
关于积分的说明 9009315
捐赠科研通 2736025
什么是DOI,文献DOI怎么找? 1500517
科研通“疑难数据库(出版商)”最低求助积分说明 693652
邀请新用户注册赠送积分活动 691914