Spatio-temporal convolution for classification of alzheimer disease and mild cognitive impairment

痴呆 神经影像学 认知 卷积神经网络 认知障碍 阿尔茨海默病 阿尔茨海默病神经影像学倡议 疾病 磁共振成像 人工智能 医学 心理学 计算机科学 听力学 神经科学 内科学 放射科
作者
Gülce Turhan,Halûk Küçük,Esin Öztürk-Işık
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106825-106825 被引量:11
标识
DOI:10.1016/j.cmpb.2022.106825
摘要

Dementia refers to the loss of memory and other cognitive abilities. Alzheimer's disease (AD), which patients eventually die from, is the most common cause of dementia. In USA, %60 to %80 of dementia cases, are caused by AD. An estimate of 5.2 million people from all age groups have been diagnosed with AD in 2014. Mild cognitive impairment (MCI) is a preliminary stage of dementia with noticeable changes in patient's cognitive abilities. Individuals, who bear MCI symptoms, are prone to developing AD. Therefore, identification of MCI patients is very critical for a plausible treatment before it reaches to AD, the irreversible stage of this neurodegenerative disease.Development of machine learning algorithms have recently gained a significant pace in early diagnosis of Alzheimer's disease (AD). In this study, a (2+1)D convolutional neural network (CNN) architecture has been proposed to distinguish mild cognitive impairment (MCI) from AD, based on structural magnetic resonance imaging (MRI). MRI scans of AD and MCI subjects were procured from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 507 scans of 223 AD patients and 507 scans of 204 MCI patients were obtained for the computational experiments.The outcome and robustness of 2D convolutions, 3D convolutions and (2+1)D convolutions were compared. The CNN algorithms incorporated 2 to 6 convolutional layers, depending on the architecture, followed by 4 pooling layers and 3 fully connected layers. (2+1)D convolutional neural network model resulted in the best classification performance with 85% auc score, in addition to an almost two times faster convergence compared to classical 3D CNN methods.Application of (2+1)D CNN algorithm to large datasets and deeper neural network models can provide a significant advantage in speed, due to its architecture handling images in spatial and temporal dimensions separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之发布了新的文献求助10
1秒前
1秒前
1秒前
天真涵双发布了新的文献求助30
1秒前
淡淡依凝发布了新的文献求助30
1秒前
脑洞疼应助guozizi采纳,获得10
1秒前
张腾飞发布了新的文献求助20
2秒前
科研饼发布了新的文献求助10
2秒前
3秒前
今后应助洁净的锦程采纳,获得10
4秒前
4秒前
4秒前
manman发布了新的文献求助10
5秒前
5秒前
大一泽完成签到,获得积分20
5秒前
Orange应助fxy采纳,获得10
6秒前
852应助xiangdemeilo采纳,获得10
6秒前
麻果发布了新的文献求助10
6秒前
Orange应助勤劳的鸡采纳,获得10
6秒前
顾矜应助abc123采纳,获得10
6秒前
6秒前
跳跃发布了新的文献求助10
7秒前
7秒前
178181发布了新的文献求助10
7秒前
扶苏完成签到,获得积分10
8秒前
完美世界应助YaoHui采纳,获得10
8秒前
xx发布了新的文献求助10
9秒前
今后应助fan采纳,获得10
9秒前
10秒前
10秒前
10秒前
Akim应助炙热觅海采纳,获得10
10秒前
橘子发布了新的文献求助10
10秒前
期刊应助linkoop采纳,获得10
11秒前
淡淡依凝完成签到,获得积分10
12秒前
13秒前
skittles发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099