Spatio-temporal convolution for classification of alzheimer disease and mild cognitive impairment

痴呆 神经影像学 认知 卷积神经网络 认知障碍 阿尔茨海默病 阿尔茨海默病神经影像学倡议 疾病 磁共振成像 人工智能 医学 心理学 计算机科学 听力学 神经科学 内科学 放射科
作者
Gülce Turhan,Halûk Küçük,Esin Öztürk-Işık
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106825-106825 被引量:11
标识
DOI:10.1016/j.cmpb.2022.106825
摘要

Dementia refers to the loss of memory and other cognitive abilities. Alzheimer's disease (AD), which patients eventually die from, is the most common cause of dementia. In USA, %60 to %80 of dementia cases, are caused by AD. An estimate of 5.2 million people from all age groups have been diagnosed with AD in 2014. Mild cognitive impairment (MCI) is a preliminary stage of dementia with noticeable changes in patient's cognitive abilities. Individuals, who bear MCI symptoms, are prone to developing AD. Therefore, identification of MCI patients is very critical for a plausible treatment before it reaches to AD, the irreversible stage of this neurodegenerative disease.Development of machine learning algorithms have recently gained a significant pace in early diagnosis of Alzheimer's disease (AD). In this study, a (2+1)D convolutional neural network (CNN) architecture has been proposed to distinguish mild cognitive impairment (MCI) from AD, based on structural magnetic resonance imaging (MRI). MRI scans of AD and MCI subjects were procured from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 507 scans of 223 AD patients and 507 scans of 204 MCI patients were obtained for the computational experiments.The outcome and robustness of 2D convolutions, 3D convolutions and (2+1)D convolutions were compared. The CNN algorithms incorporated 2 to 6 convolutional layers, depending on the architecture, followed by 4 pooling layers and 3 fully connected layers. (2+1)D convolutional neural network model resulted in the best classification performance with 85% auc score, in addition to an almost two times faster convergence compared to classical 3D CNN methods.Application of (2+1)D CNN algorithm to large datasets and deeper neural network models can provide a significant advantage in speed, due to its architecture handling images in spatial and temporal dimensions separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Biu忒佛完成签到,获得积分10
刚刚
顾矜应助热心的寒天采纳,获得10
1秒前
2秒前
2秒前
或习发布了新的文献求助10
2秒前
无花果应助iui飞采纳,获得10
3秒前
赘婿应助liua采纳,获得10
4秒前
nihao2023发布了新的文献求助10
4秒前
科目三应助qian72133采纳,获得10
4秒前
暴躁的冰旋完成签到,获得积分10
5秒前
5秒前
汉堡包应助Aza采纳,获得10
6秒前
天天快乐应助Fighter采纳,获得10
7秒前
Sherry完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
晓雯发布了新的文献求助10
9秒前
或习完成签到,获得积分20
9秒前
9秒前
完美世界应助小恶采纳,获得10
10秒前
北海_hello发布了新的文献求助10
12秒前
852应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
李爱国应助于大本事采纳,获得10
13秒前
13秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207040
求助须知:如何正确求助?哪些是违规求助? 2856445
关于积分的说明 8104758
捐赠科研通 2521574
什么是DOI,文献DOI怎么找? 1354842
科研通“疑难数据库(出版商)”最低求助积分说明 642071
邀请新用户注册赠送积分活动 613343