已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-temporal convolution for classification of alzheimer disease and mild cognitive impairment

痴呆 神经影像学 认知 卷积神经网络 认知障碍 阿尔茨海默病 阿尔茨海默病神经影像学倡议 疾病 磁共振成像 人工智能 医学 心理学 计算机科学 听力学 神经科学 内科学 放射科
作者
Gülce Turhan,Halûk Küçük,Esin Öztürk-Işık
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:221: 106825-106825 被引量:11
标识
DOI:10.1016/j.cmpb.2022.106825
摘要

Dementia refers to the loss of memory and other cognitive abilities. Alzheimer's disease (AD), which patients eventually die from, is the most common cause of dementia. In USA, %60 to %80 of dementia cases, are caused by AD. An estimate of 5.2 million people from all age groups have been diagnosed with AD in 2014. Mild cognitive impairment (MCI) is a preliminary stage of dementia with noticeable changes in patient's cognitive abilities. Individuals, who bear MCI symptoms, are prone to developing AD. Therefore, identification of MCI patients is very critical for a plausible treatment before it reaches to AD, the irreversible stage of this neurodegenerative disease.Development of machine learning algorithms have recently gained a significant pace in early diagnosis of Alzheimer's disease (AD). In this study, a (2+1)D convolutional neural network (CNN) architecture has been proposed to distinguish mild cognitive impairment (MCI) from AD, based on structural magnetic resonance imaging (MRI). MRI scans of AD and MCI subjects were procured from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 507 scans of 223 AD patients and 507 scans of 204 MCI patients were obtained for the computational experiments.The outcome and robustness of 2D convolutions, 3D convolutions and (2+1)D convolutions were compared. The CNN algorithms incorporated 2 to 6 convolutional layers, depending on the architecture, followed by 4 pooling layers and 3 fully connected layers. (2+1)D convolutional neural network model resulted in the best classification performance with 85% auc score, in addition to an almost two times faster convergence compared to classical 3D CNN methods.Application of (2+1)D CNN algorithm to large datasets and deeper neural network models can provide a significant advantage in speed, due to its architecture handling images in spatial and temporal dimensions separately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助阿玖采纳,获得10
1秒前
2秒前
3秒前
一路生花碎西瓜完成签到 ,获得积分10
4秒前
赫连涵柏完成签到,获得积分0
4秒前
海聪天宇完成签到,获得积分10
7秒前
江江发布了新的文献求助10
8秒前
哦哈哈哈发布了新的文献求助10
9秒前
Lusteri完成签到 ,获得积分10
11秒前
rcrc完成签到,获得积分20
11秒前
俯冲食堂完成签到,获得积分10
17秒前
21秒前
今后应助江江采纳,获得30
21秒前
风趣的芝麻完成签到 ,获得积分10
22秒前
CipherSage应助念一采纳,获得10
23秒前
归去来兮应助爱听歌笑寒采纳,获得10
26秒前
小萌兽完成签到 ,获得积分10
27秒前
zdd发布了新的文献求助10
27秒前
27秒前
28秒前
YQY完成签到 ,获得积分10
29秒前
Picachu完成签到 ,获得积分10
30秒前
Criminology34给仲谋的求助进行了留言
31秒前
端庄千青发布了新的文献求助10
33秒前
充电宝应助zdd采纳,获得10
33秒前
竹签子完成签到,获得积分10
36秒前
哈哈应助sl采纳,获得10
37秒前
40秒前
TUTU发布了新的文献求助10
47秒前
48秒前
rcrc关注了科研通微信公众号
52秒前
52秒前
元宝团子完成签到,获得积分10
53秒前
56秒前
56秒前
TUTU完成签到,获得积分10
57秒前
日拱一卒发布了新的文献求助10
59秒前
yoyo发布了新的文献求助20
59秒前
阿玖发布了新的文献求助10
1分钟前
江江发布了新的文献求助30
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644324
求助须知:如何正确求助?哪些是违规求助? 4763793
关于积分的说明 15024805
捐赠科研通 4802760
什么是DOI,文献DOI怎么找? 2567542
邀请新用户注册赠送积分活动 1525311
关于科研通互助平台的介绍 1484767