Development and validation of a prognostic nomogram for gallbladder cancer patients after surgery

列线图 医学 胆囊癌 阶段(地层学) 内科学 多元分析 队列 单变量 T级 单变量分析 一致性 癌症 比例危险模型 流行病学 肿瘤科 外科 多元统计 统计 古生物学 数学 生物
作者
Xinsen Xu,Min He,Hui Wang,Ming Zhan,Linhua Yang
出处
期刊:BMC Gastroenterology [Springer Nature]
卷期号:22 (1) 被引量:19
标识
DOI:10.1186/s12876-022-02281-2
摘要

Gallbladder cancer is associated with late diagnosis and poor prognosis. Current study aims to develop a prognostic nomogram for predicting survival of gallbladder cancer patients after surgery.Two large cohorts were included in this analysis. One consisted of 1753 gallbladder cancer patients from the Surveillance, Epidemiology, and End Results (SEER) database, and the other consisted of 239 patients from Shanghai Renji hospital. Significant prognostic factors were identified and integrated to develop the nomogram. Then the model was subjected to bootstrap internal validation and external validation.Univariate and multivariate analysis indicated that age, tumor histology, T-stage, N-stage and M-stage were significant prognostic factors, which were all included to build the nomogram. The model showed good discrimination, with a concordance index (C-index) of 0.724 (95% CI, 0.708-0.740), and good calibration. Application of the nomogram in the validation cohort still presented good discrimination (C-index, 0.715 [95% CI 0.672-0.758]) and good calibration. In the primary cohort, the C-index of the nomogram was 0.724, which was significantly higher than the Nevin staging system (C-index = 0.671; P < 0.001) and the 8th TNM staging system (C-index = 0.682; P < 0.001). In the validation cohort, the C-index of the nomogram was 0.715, which was also higher than the Nevin staging system (C-index = 0.692; P < 0.05) and the 8th TNM staging system (C-index = 0.688; P = 0.06).The proposed nomogram resulted in more-accurate prognostic prediction for patients with gallbladder cancer after surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nes发布了新的文献求助10
1秒前
大模型应助winwing采纳,获得30
1秒前
2秒前
2秒前
秀丽的小懒虫完成签到,获得积分10
2秒前
清明居士发布了新的文献求助10
3秒前
嘻嘻哈哈发布了新的文献求助10
3秒前
4秒前
Fortune发布了新的文献求助10
5秒前
5秒前
6秒前
sasa发布了新的文献求助10
6秒前
Lexi发布了新的文献求助10
6秒前
积极的凝云完成签到,获得积分10
6秒前
半夏发布了新的文献求助10
6秒前
月星发布了新的文献求助10
7秒前
睿力发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
伶俐的夜梦完成签到,获得积分10
7秒前
Tracy完成签到,获得积分10
8秒前
随便关注了科研通微信公众号
8秒前
TIAMO完成签到,获得积分10
9秒前
9秒前
Nes完成签到,获得积分20
9秒前
10秒前
10秒前
CherylZhao发布了新的文献求助10
11秒前
爆米花应助wen采纳,获得10
11秒前
11秒前
sasa完成签到,获得积分10
12秒前
Orange应助眼里还有光采纳,获得10
13秒前
小蘑菇应助伶俐的夜梦采纳,获得30
13秒前
weiyi完成签到,获得积分20
13秒前
ff发布了新的文献求助10
14秒前
Fortune完成签到,获得积分10
14秒前
邹秋雨发布了新的文献求助10
14秒前
123lx完成签到 ,获得积分10
14秒前
15秒前
轻松完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802