Development and validation of a prognostic nomogram for gallbladder cancer patients after surgery

列线图 医学 胆囊癌 阶段(地层学) 内科学 多元分析 队列 单变量 T级 单变量分析 一致性 癌症 比例危险模型 流行病学 肿瘤科 外科 多元统计 统计 古生物学 数学 生物
作者
Xinsen Xu,Min He,Hui Wang,Ming Zhan,Linhua Yang
出处
期刊:BMC Gastroenterology [Springer Nature]
卷期号:22 (1) 被引量:19
标识
DOI:10.1186/s12876-022-02281-2
摘要

Gallbladder cancer is associated with late diagnosis and poor prognosis. Current study aims to develop a prognostic nomogram for predicting survival of gallbladder cancer patients after surgery.Two large cohorts were included in this analysis. One consisted of 1753 gallbladder cancer patients from the Surveillance, Epidemiology, and End Results (SEER) database, and the other consisted of 239 patients from Shanghai Renji hospital. Significant prognostic factors were identified and integrated to develop the nomogram. Then the model was subjected to bootstrap internal validation and external validation.Univariate and multivariate analysis indicated that age, tumor histology, T-stage, N-stage and M-stage were significant prognostic factors, which were all included to build the nomogram. The model showed good discrimination, with a concordance index (C-index) of 0.724 (95% CI, 0.708-0.740), and good calibration. Application of the nomogram in the validation cohort still presented good discrimination (C-index, 0.715 [95% CI 0.672-0.758]) and good calibration. In the primary cohort, the C-index of the nomogram was 0.724, which was significantly higher than the Nevin staging system (C-index = 0.671; P < 0.001) and the 8th TNM staging system (C-index = 0.682; P < 0.001). In the validation cohort, the C-index of the nomogram was 0.715, which was also higher than the Nevin staging system (C-index = 0.692; P < 0.05) and the 8th TNM staging system (C-index = 0.688; P = 0.06).The proposed nomogram resulted in more-accurate prognostic prediction for patients with gallbladder cancer after surgery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的听筠完成签到,获得积分10
2秒前
英姑应助斯文天寿采纳,获得30
2秒前
4秒前
4秒前
机器狗发布了新的文献求助10
7秒前
gong发布了新的文献求助20
8秒前
科研通AI6应助qjq采纳,获得10
8秒前
万能图书馆应助C14H10采纳,获得10
8秒前
NEW发布了新的文献求助10
10秒前
10秒前
哭泣乌完成签到,获得积分10
10秒前
Wenfeifei完成签到,获得积分20
11秒前
11秒前
大豹子发布了新的文献求助10
16秒前
科研通AI6应助Wenfeifei采纳,获得10
21秒前
21秒前
圆脸的空间啊完成签到,获得积分10
23秒前
dearcih完成签到,获得积分10
25秒前
28秒前
28秒前
Ava应助眯眯眼的裙子采纳,获得10
29秒前
壮观溪流发布了新的文献求助10
33秒前
素雅发布了新的文献求助10
34秒前
大豹子发布了新的文献求助10
35秒前
Jasper应助皞渺采纳,获得10
40秒前
开心远山完成签到,获得积分10
41秒前
干净的海云完成签到 ,获得积分10
41秒前
42秒前
BowieHuang应助mario采纳,获得10
45秒前
开心远山发布了新的文献求助10
46秒前
斯文天寿发布了新的文献求助30
47秒前
香蕉觅云应助皞渺采纳,获得10
47秒前
天天快乐应助素雅采纳,获得10
49秒前
英姑应助皞渺采纳,获得10
55秒前
JESI完成签到,获得积分10
57秒前
健壮易巧完成签到,获得积分10
58秒前
科研通AI6应助he采纳,获得10
59秒前
酷波er应助NEW采纳,获得10
1分钟前
可爱的函函应助myg8627采纳,获得10
1分钟前
Orange应助微笑的曼容采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558000
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14669931
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514828
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619