Dual Self‐Built Gating Boosts the Hydrogen Evolution Reaction

门控 过电位 塔菲尔方程 材料科学 催化作用 电场 异质结 化学物理 纳米技术 化学工程 电极 电化学 光电子学 化学 物理化学 有机化学 物理 生物物理学 工程类 生物 量子力学
作者
Xiaohui Zhu,Chenyang Wang,Tingli Wang,Haihui Lan,Yu Ding,Hu Shi,Lisi Liu,Haiwen Shi,Luyang Wang,Huiliu Wang,Yiran Ding,Ying‐Shuang Fu,Mengqi Zeng,Lei Fu
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (27) 被引量:23
标识
DOI:10.1002/adma.202202479
摘要

Optimizing the intrinsic activity of active sites is an appealing strategy for accelerating the kinetics of the catalytic process. Here, a design principle, namely "dual self-built gating", is proposed to tailor the electronic structures of catalysts. Catalytic improvement is confirmed in a model catalyst with a ReS2 -WS2 /WS2 hybridized heterostructure. As demonstrated in experimental and theoretical results, the dual gating can bidirectionally guide electron transfer and redistribute at the interface, endowing the model catalyst with an electron-rich region. The tailored electronic structures balance the adsorption of intermediates and the desorption of hydrogen synergistically to enhance the reaction kinetics for the hydrogen evolution reaction. Interestingly, the effect of dual gating can be easily amplified by the electric field. The overpotential and Tafel slope (49 mV, 35 mV dec-1 ) obtained under the electric field for ReS2 -WS2 /WS2 catalyst with the dual self-built gating effect are far below than those (210 mV, 116 mV dec-1 ) of the pure WS2 catalyst, which exhibits nearly four times improvement. The concept of dual gating can be applied to more systems, offering a new guideline for designing advanced electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
ATAYA发布了新的文献求助10
2秒前
星瑆心发布了新的文献求助10
2秒前
Lazarus_x完成签到,获得积分10
3秒前
whm发布了新的文献求助10
4秒前
豆dou发布了新的文献求助10
6秒前
旭日东升完成签到 ,获得积分10
7秒前
yyyyou完成签到,获得积分10
8秒前
科研通AI5应助xlj采纳,获得10
10秒前
Jenny应助WZ0904采纳,获得10
10秒前
弘一完成签到,获得积分10
10秒前
郑zhenglanyou完成签到 ,获得积分10
11秒前
13秒前
忧子忘完成签到,获得积分10
13秒前
14秒前
foreverchoi完成签到,获得积分10
14秒前
HH完成签到,获得积分20
14秒前
15秒前
whm完成签到,获得积分10
15秒前
17秒前
邬傥完成签到,获得积分10
18秒前
tomato应助执着采纳,获得20
19秒前
大方嵩发布了新的文献求助10
19秒前
梓ccc完成签到,获得积分10
19秒前
19秒前
求助发布了新的文献求助10
20秒前
风雨1210发布了新的文献求助10
20秒前
20秒前
21秒前
小梁要加油完成签到,获得积分20
21秒前
Alpha发布了新的文献求助10
22秒前
刘鹏宇发布了新的文献求助10
23秒前
zhangscience完成签到,获得积分10
23秒前
可爱的函函应助若狂采纳,获得10
24秒前
小蘑菇应助阿美采纳,获得30
24秒前
科研通AI2S应助机智小虾米采纳,获得10
25秒前
充电宝应助Xx.采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808