EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection

计算机科学 稳健性(进化) 人工智能 点云 判别式 目标检测 计算机视觉 激光雷达 级联 情态动词 传感器融合 融合 图像融合 模式识别(心理学) 图像(数学) 遥感 工程类 生物化学 化学 语言学 哲学 化学工程 高分子化学 基因 地质学
作者
Zhe Liu,Tengteng Huang,Bingling Li,Xiwu Chen,Xi Wang,Xiang Bai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:69
标识
DOI:10.1109/tpami.2022.3228806
摘要

Recently, fusing the LiDAR point cloud and camera image to improve the performance and robustness of 3D object detection has received more and more attention, as these two modalities naturally possess strong complementarity. In this paper, we propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion (CB-Fusion) module and a Multi-Modal Consistency (MC) loss. More concretely, the proposed CB-Fusion module enhances point features with plentiful semantic information absorbed from the image features in a cascade bi-directional interaction fusion manner, leading to more powerful and discriminative feature representations. The MC loss explicitly guarantees the consistency between predicted scores from two modalities to obtain more comprehensive and reliable confidence scores. The experimental results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods. Besides, we emphasize a critical but easily overlooked problem, which is to explore the performance and robustness of a 3D detector in a sparser scene. Extensive experiments present that EPNet++ outperforms the existing SOTA methods with remarkable margins in highly sparse point cloud cases, which might be an available direction to reduce the expensive cost of LiDAR sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰杰完成签到,获得积分20
1秒前
nini发布了新的文献求助10
1秒前
田様应助Chenbiao采纳,获得10
1秒前
开朗的保温杯完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
胖胖发布了新的文献求助20
4秒前
小马甲应助积极山雁采纳,获得10
4秒前
taozhiqi完成签到,获得积分10
5秒前
陶大锤完成签到 ,获得积分10
5秒前
多米发布了新的文献求助10
5秒前
ZZ完成签到,获得积分10
5秒前
时光发布了新的文献求助50
6秒前
险胜应助kingmantj采纳,获得10
7秒前
dove完成签到 ,获得积分10
7秒前
533发布了新的文献求助10
7秒前
Bressanone发布了新的文献求助10
8秒前
8秒前
pu完成签到 ,获得积分10
9秒前
险胜应助CBWKEYANTONG123采纳,获得10
9秒前
jldjbx发布了新的文献求助10
10秒前
CipherSage应助甜甜的梦菡采纳,获得10
10秒前
完美夏天完成签到,获得积分10
10秒前
11秒前
12秒前
万能图书馆应助皮凡采纳,获得10
12秒前
12秒前
gg发布了新的文献求助10
12秒前
12秒前
多米完成签到,获得积分10
13秒前
TTTT发布了新的文献求助10
13秒前
13秒前
13秒前
毛豆应助455采纳,获得20
13秒前
田様应助四月天采纳,获得10
14秒前
14秒前
jldjbx完成签到,获得积分10
14秒前
wenzheng发布了新的文献求助10
17秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308756
求助须知:如何正确求助?哪些是违规求助? 2942097
关于积分的说明 8507396
捐赠科研通 2617067
什么是DOI,文献DOI怎么找? 1429972
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186