Double paths network with residual information distillation for improving lung CT image super resolution

残余物 计算机科学 块(置换群论) 路径(计算) 图像(数学) 图像分辨率 人工智能 算法 数据挖掘 数学 几何学 程序设计语言
作者
Yihan Chen,Qianying Zheng,Jiansen Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:73: 103412-103412 被引量:9
标识
DOI:10.1016/j.bspc.2021.103412
摘要

Medical image analysis is particularly important for doctors to differential diagnosis of diseases. Due to the outbreak of COVID-19, how to diagnose COVID-19 accurately has become a key issue. High-resolution lung CT images can provide more diagnostic information, so there is an urgent need to develop a super-resolution method to improve the resolution of medical images.In this paper, a method based on double paths with residual information distillation for medical images super resolution (DRIDSR) is established. In the low-frequency path, shallow convolutional network is used to get low-frequency features, while in the high-frequency path, a residual information distillation module (RIDM) is designed to obtain clearer high-frequency features. RIDM cascades multiple residual blocks, and uses the output of each residual block as the input of IDB for further information distillation. Finally, it merges the information left by multiple IDBs as output.The proposed method is tested on the public dataset COVID-CT. The DRIDSR reconstruction quality of the algorithm is higher than that of the SRCNN, ESPCN, VDSR, IMDN and PAN method (+2.21 dB, +2.41 dB, +1.42 dB, +0.43 dB, +0.54 dB improvement, respectively) at × 3 upscale factor and (+2.35 dB, +2.17 dB, +1.59 dB, +0.48 dB, +0.56 dB increase, respectively) at ×4 upscale factor. While the number of parameters and analysis time of our model are reduced.It is demonstrated that DRIDSR network can obtain better performance and better HR medical images than several state-of-the-art SR methods in terms of objective indicators and subjective evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ECUST发布了新的文献求助10
刚刚
1秒前
1秒前
你帅你有理完成签到,获得积分10
1秒前
2秒前
顺利毕业发布了新的文献求助10
3秒前
一一应助傅傅采纳,获得10
3秒前
4秒前
oo发布了新的文献求助10
4秒前
double完成签到,获得积分10
5秒前
橙子发布了新的文献求助40
5秒前
彭于晏应助AlvinCZY采纳,获得10
5秒前
华仔应助未来的闫院士采纳,获得10
6秒前
飘逸问晴发布了新的文献求助30
6秒前
SYLH应助鹏飞采纳,获得10
7秒前
cjr发布了新的文献求助10
7秒前
爆米花应助芋头粽子采纳,获得10
7秒前
咕咕风发布了新的文献求助10
8秒前
9秒前
33发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
烟花应助lx采纳,获得10
13秒前
LMA发布了新的文献求助10
13秒前
传奇3应助ADAMWS采纳,获得10
14秒前
15秒前
李健的小迷弟应助lulu采纳,获得10
15秒前
15秒前
15秒前
斯文败类应助咕咕风采纳,获得10
15秒前
放寒假的发布了新的文献求助10
15秒前
17秒前
天天快乐应助33采纳,获得10
17秒前
芋头粽子完成签到,获得积分10
19秒前
19秒前
童英浩发布了新的文献求助10
19秒前
豌豆完成签到,获得积分10
19秒前
20秒前
酷炫邑发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178