An ANN model to predict oil recovery from a 5-spot waterflood of a heterogeneous reservoir

自适应神经模糊推理系统 油田 石油工程 储层模拟 油到位 支持向量机 计算机科学 磁导率 提高采收率 人工神经网络 石油 地质学 机器学习 人工智能 模糊逻辑 模糊控制系统 遗传学 生物 古生物学
作者
Shams Kalam,Usama Yousuf,Sidqi A. Abu-Khamsin,Umair bin Waheed,Rizwan Ahmed Khan
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:210: 110012-110012 被引量:15
标识
DOI:10.1016/j.petrol.2021.110012
摘要

Waterflooding is a secondary oil recovery technique in which water is injected into an underground oil reservoir to maintain the reservoir pressure and boost oil recovery. The performance of a waterflood depends on several factors such as reservoir heterogeneity, reservoir fluid properties, flood pattern, etc. Most of the models developed to predict waterflood performance are either for linear systems or involve simplified assumptions for non-linear systems. In this study, we propose a novel, artificial neural network (ANN) model comprised of two hidden layers with 256 neurons each for the performance prediction of a 5-spot pattern waterflood in a heterogeneous reservoir at and beyond water breakthrough. The proposed model can be applied to estimate movable oil recovery efficiency of the waterflood (RFM) as a function of Dykstra-Parsons permeability variation coefficient (V), mobility ratio (M), permeability anisotropy ratio (kz/kx), production water cut (fw), a simple indicator of wettability (WI), and oil/water density ratio (DR) within reasonable accuracy. The MAPE of the proposed model was ∼4% and ∼5% using training and testing data, respectively. Our ANN model recommendation is based on a detailed comparative study against other popular soft computing models, such as adaptive neuro-fuzzy inference system (ANFIS) and support vector regression (SVR). Based on the accuracy and computational efficiency, the ANN model outperforms ANFIS and SVR. AIC and BIC of the proposed ANN model were also the lowest among all applied soft computing tools. The proposed model is tested on two real field cases and compared with a semi-analytical model and an empirical correlation. The presented model shows good agreement with the real field data. The trained ANN model, proposed here, saves computational time in forecasting the waterflood performance compared to a reservoir simulator.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助奔跑的小鹰采纳,获得10
1秒前
1秒前
2秒前
彭于晏应助古芍昂采纳,获得10
2秒前
3秒前
kingwill应助月夙采纳,获得20
4秒前
4秒前
5秒前
6秒前
李圳铭发布了新的文献求助10
6秒前
的微博发布了新的文献求助10
6秒前
7秒前
风趣从露发布了新的文献求助10
7秒前
二玥发布了新的文献求助10
7秒前
完美世界应助ss采纳,获得10
7秒前
烟花应助初夏采纳,获得10
8秒前
8秒前
10秒前
领导范儿应助风趣从露采纳,获得10
12秒前
云起龙都发布了新的文献求助10
12秒前
13秒前
微凉发布了新的文献求助30
13秒前
完美世界应助阿乐采纳,获得10
14秒前
炼丹发布了新的文献求助10
15秒前
Jay完成签到 ,获得积分10
16秒前
英俊的铭应助沧海一粟采纳,获得10
17秒前
zeke发布了新的文献求助10
17秒前
研友_VZG7GZ应助高贵的夜雪采纳,获得10
17秒前
瓜6完成签到 ,获得积分10
18秒前
香芋应助初夏采纳,获得10
19秒前
19秒前
华仔应助炼丹采纳,获得10
20秒前
22秒前
22秒前
道阻且长发布了新的文献求助10
23秒前
maox1aoxin应助Rein采纳,获得30
23秒前
乐多子完成签到,获得积分20
24秒前
Ava应助端庄的白开水采纳,获得10
24秒前
励志搞科研完成签到,获得积分10
25秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433940
求助须知:如何正确求助?哪些是违规求助? 3031105
关于积分的说明 8940918
捐赠科研通 2719112
什么是DOI,文献DOI怎么找? 1491653
科研通“疑难数据库(出版商)”最低求助积分说明 689357
邀请新用户注册赠送积分活动 685523