Intra-domain and cross-domain transfer learning for time series data—How transferable are the features?

学习迁移 超参数 计算机科学 机器学习 人工智能 趋同(经济学) 知识转移 系列(地层学) 领域(数学分析) 传输(计算) 领域知识 时间序列 数学 古生物学 数学分析 知识管理 并行计算 经济 生物 经济增长
作者
Erik Otović,Marko Njirjak,Dario Jozinović,Goran Mauša,Alberto Michelini,Ivan Štajduhar
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:239: 107976-107976 被引量:34
标识
DOI:10.1016/j.knosys.2021.107976
摘要

In practice, it is very challenging and sometimes impossible to collect datasets of labelled data large enough to successfully train a machine learning model, and one possible solution to this problem is using transfer learning. In this study, we investigate how transferable are features between different domains of time series data and under what conditions. The effects of transfer learning are observed in terms of the predictive performance of the models and their convergence rate during training. In our experiment, we used reduced datasets of 1500 and 9000 data instances to mimic real-world conditions. We trained two sets of models (four different architectures) on the reduced datasets: those trained with transfer learning and those trained from scratch. Knowledge transfer was performed both within the same application domain (seismology) and between different application domains (seismology, speech, medicine, finance). We observed the prediction performance of the models and their training convergence rate. We repeated the experiments seven times and applied statistical tests to confirm the validity of the results. The overall conclusion of our study is that transfer learning is highly likely to either increase or not negatively affect the model’s predictive performance or its training convergence rate. We discuss which source and target domains are compatible for knowledge transfer. We also discuss the effect of the target dataset size and the choice of the model and its hyperparameters on transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
靥礼服完成签到,获得积分10
2秒前
Ollm完成签到 ,获得积分10
2秒前
言亦云发布了新的文献求助10
2秒前
3秒前
zhengzehong完成签到,获得积分10
4秒前
学术垃圾发布了新的文献求助10
8秒前
完美世界应助无心的夏烟采纳,获得10
9秒前
9秒前
11秒前
热心易绿完成签到 ,获得积分10
11秒前
酷波er应助无心的夏烟采纳,获得10
12秒前
善学以致用应助靥礼服采纳,获得10
14秒前
坦率冰旋完成签到,获得积分10
16秒前
astost完成签到,获得积分10
16秒前
rayce发布了新的文献求助10
16秒前
chen完成签到,获得积分10
17秒前
一缕阳光完成签到,获得积分10
17秒前
20秒前
Hysen_L发布了新的文献求助10
21秒前
my196755发布了新的文献求助10
24秒前
24秒前
younghippo完成签到,获得积分10
24秒前
HHH发布了新的文献求助10
25秒前
SYLH应助amin采纳,获得10
27秒前
27秒前
桐桐应助无味采纳,获得30
28秒前
wangling2333完成签到,获得积分10
28秒前
文静映安发布了新的文献求助10
29秒前
tuzhifengyin完成签到,获得积分10
30秒前
懒羊羊完成签到,获得积分10
31秒前
学术芽完成签到,获得积分10
32秒前
rayce完成签到,获得积分10
33秒前
33秒前
my196755完成签到,获得积分10
36秒前
37秒前
曾经小伙完成签到 ,获得积分10
37秒前
lili完成签到 ,获得积分10
37秒前
爆米花应助HHH采纳,获得10
37秒前
Pandaer发布了新的文献求助10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993