亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intra-domain and cross-domain transfer learning for time series data—How transferable are the features?

学习迁移 超参数 计算机科学 机器学习 人工智能 趋同(经济学) 知识转移 系列(地层学) 领域(数学分析) 传输(计算) 领域知识 时间序列 数学 古生物学 数学分析 知识管理 并行计算 经济 生物 经济增长
作者
Erik Otović,Marko Njirjak,Dario Jozinović,Goran Mauša,Alberto Michelini,Ivan Štajduhar
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:239: 107976-107976 被引量:34
标识
DOI:10.1016/j.knosys.2021.107976
摘要

In practice, it is very challenging and sometimes impossible to collect datasets of labelled data large enough to successfully train a machine learning model, and one possible solution to this problem is using transfer learning. In this study, we investigate how transferable are features between different domains of time series data and under what conditions. The effects of transfer learning are observed in terms of the predictive performance of the models and their convergence rate during training. In our experiment, we used reduced datasets of 1500 and 9000 data instances to mimic real-world conditions. We trained two sets of models (four different architectures) on the reduced datasets: those trained with transfer learning and those trained from scratch. Knowledge transfer was performed both within the same application domain (seismology) and between different application domains (seismology, speech, medicine, finance). We observed the prediction performance of the models and their training convergence rate. We repeated the experiments seven times and applied statistical tests to confirm the validity of the results. The overall conclusion of our study is that transfer learning is highly likely to either increase or not negatively affect the model’s predictive performance or its training convergence rate. We discuss which source and target domains are compatible for knowledge transfer. We also discuss the effect of the target dataset size and the choice of the model and its hyperparameters on transfer learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
呼延水云发布了新的文献求助10
19秒前
要减肥的胖子应助周周采纳,获得10
19秒前
27秒前
科研通AI6应助George采纳,获得10
38秒前
斯文败类应助Aurora采纳,获得10
42秒前
bkagyin应助科研通管家采纳,获得10
50秒前
脑洞疼应助科研通管家采纳,获得10
50秒前
JamesPei应助科研通管家采纳,获得10
50秒前
1分钟前
Ade107发布了新的文献求助10
1分钟前
1分钟前
宓广缘完成签到 ,获得积分10
1分钟前
应寒年完成签到 ,获得积分10
1分钟前
Ava应助靓丽的珊珊采纳,获得10
1分钟前
1分钟前
1分钟前
carols发布了新的文献求助10
1分钟前
小马甲应助Ade107采纳,获得10
1分钟前
Thi发布了新的文献求助10
1分钟前
靓丽衫完成签到 ,获得积分10
1分钟前
qiuzhiri完成签到,获得积分10
1分钟前
小二郎应助George采纳,获得10
1分钟前
1分钟前
1分钟前
在水一方应助qiuzhiri采纳,获得10
1分钟前
Nightfall发布了新的文献求助10
1分钟前
善学以致用应助LALA采纳,获得10
1分钟前
包容远山完成签到,获得积分10
1分钟前
在水一方应助陈大仙采纳,获得10
1分钟前
科研通AI2S应助Nightfall采纳,获得10
2分钟前
George发布了新的文献求助10
2分钟前
爆米花应助无奈的靖仇采纳,获得10
2分钟前
2分钟前
2分钟前
LALA发布了新的文献求助10
2分钟前
夜安发布了新的文献求助10
2分钟前
陈大仙发布了新的文献求助10
2分钟前
乐乐应助LALA采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425