The high piezoelectricity, flexibility and electronic properties of new Janus ZnXY2 (X = Ge, Sn, Si and Y = S, Se, Te) monolayers: A first-principles research

杰纳斯 压电 单层 材料科学 凝聚态物理 带隙 直接和间接带隙 半导体 体积模量 有效质量(弹簧-质量系统) 纳米技术 光电子学 复合材料 物理 量子力学
作者
Tao Zhang,Ying Liang,Hao Guo,Haidong Fan,Xiaobao Tian
出处
期刊:Applied Surface Science [Elsevier]
卷期号:579: 152017-152017 被引量:18
标识
DOI:10.1016/j.apsusc.2021.152017
摘要

Due to the broken of inversion and mirror symmetry, Janus structures are believed to have abundant properties and can be applied in two-dimensional (2D) materials, but the research of 2D Janus materials is insufficient. In this work, Janus materials ZnXY2 (X = Ge, Sn, Si and Y = S, Se, Te) monolayers are designed referring to group-III monochalcogenides. The electronic, mechanical and piezoelectric properties and stabilities of ZnXY2 monolayers are investigated by the first-principles calculations. The electronic property shows that ZnXY2 monolayers are semiconductors with wide direct band-gaps and large effective masses difference between holes and electrons. The mechanical property shows that ZnXY2 monolayers possess low Young's modulus, bending modulus and ductile properties, which is beneficial for applications in flexible nanodevices. The piezoelectric property shows that, compared with conventional Janus group-III monochalcogenides and bulk piezoelectric materials, ZnXY2 monolayers exhibit higher in-plane and comparable out-of-plane piezoelectricity. The further analyzations indicate that the distances and electronegativity differences between atoms are two important influence factors to piezoelectricity. In summary, the flexibility, piezoelectricity, direct band-gaps and large effective mass difference make ZnXY2 monolayers promising candidates for optoelectronics, photocatalysis, flexible nanodevices and electromechanical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木完成签到,获得积分10
刚刚
赤邪发布了新的文献求助10
刚刚
刚刚
keen完成签到 ,获得积分10
刚刚
et完成签到,获得积分10
1秒前
桂魄完成签到,获得积分10
1秒前
1秒前
2秒前
wang发布了新的文献求助200
3秒前
3秒前
3秒前
英姑应助snowdrift采纳,获得10
3秒前
3秒前
3秒前
jy完成签到 ,获得积分10
3秒前
NexusExplorer应助立马毕业采纳,获得10
4秒前
在水一方应助123采纳,获得10
5秒前
科目三应助白华苍松采纳,获得10
6秒前
通~发布了新的文献求助10
6秒前
CipherSage应助千幻采纳,获得10
6秒前
6秒前
dddddd完成签到,获得积分10
6秒前
桂魄发布了新的文献求助10
6秒前
年轻的咖啡豆完成签到,获得积分20
7秒前
7秒前
绿洲发布了新的文献求助10
7秒前
7秒前
8秒前
aDou完成签到 ,获得积分10
8秒前
脑洞疼应助bc采纳,获得10
8秒前
NEMO发布了新的文献求助10
8秒前
李健应助mammoth采纳,获得20
8秒前
熊boy发布了新的文献求助10
8秒前
天真思雁发布了新的文献求助10
8秒前
9秒前
情怀应助蔡蔡不菜菜采纳,获得10
9秒前
shouyu29应助MADKAI采纳,获得10
10秒前
CipherSage应助MADKAI采纳,获得10
10秒前
乐乐应助MADKAI采纳,获得10
10秒前
ChangSZ应助MADKAI采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762