Multi-task Learning Based Ocular Disease Discrimination and FAZ Segmentation Utilizing OCTA Images

计算机科学 人工智能 任务(项目管理) 分割 模式识别(心理学) 计算机视觉 图像分割 工程类 系统工程
作者
Zhonghua Wang,Li Lin,Jiewei Wu,Xiaoying Tang
标识
DOI:10.1109/embc46164.2021.9631043
摘要

In this paper, we proposed and validated a multi-task based deep learning method for simultaneously segmenting the foveal avascular zone (FAZ) and classifying three ocular disease related states (normal, diabetic, and myopia) utilizing optical coherence tomography angiography (OCTA) images. The essential motivation of this work is that reliable predictions on disease states may be made based on features extracted from a segmentation network, by sharing a same encoder between the classification network and the segmentation network. In this study, a cotraining network structure was designed for simultaneous ocular disease discrimination and FAZ segmentation. Specifically, we made use of a classification head following a segmentation network's encoder, so that the classification branch used the feature information extracted in the segmentation branch to improve the classification results. The performance of our proposed network structure has been tested and validated on the FAZID dataset, with the best Dice and Jaccard being 0.9031±0.0772 and 0.8302 ±0.0990 for FAZ segmentation, and the best Accuracy and Kappa being 0.7533 and 0.6282 for classifying three ocular disease related states.Clinical Relevance- This work provides a useful tool for segmenting FAZ and discriminating three ocular disease related states utilizing OCTA images, which has a great clinical potential in ocular disease screening and biomarker delivering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻沅发布了新的文献求助10
2秒前
火羽白然完成签到 ,获得积分10
2秒前
冰西瓜完成签到 ,获得积分10
3秒前
季忆发布了新的文献求助10
3秒前
3秒前
cc发布了新的文献求助10
4秒前
Hello应助糊涂的小伙采纳,获得10
4秒前
甜甜的冷霜完成签到,获得积分10
4秒前
hkxfg发布了新的文献求助10
5秒前
谭谨川完成签到,获得积分10
5秒前
李爱国应助云中渊采纳,获得10
6秒前
6秒前
LT发布了新的文献求助10
7秒前
7秒前
高兴藏花发布了新的文献求助10
7秒前
9秒前
Allen完成签到,获得积分10
10秒前
10秒前
楪i完成签到,获得积分10
10秒前
值得完成签到,获得积分10
12秒前
12秒前
远山完成签到,获得积分10
13秒前
星星发布了新的文献求助10
13秒前
nanhe698发布了新的文献求助20
13秒前
阳光无声完成签到,获得积分10
13秒前
金色年华发布了新的文献求助10
13秒前
shatang完成签到,获得积分10
14秒前
15秒前
Owen应助一天八杯水采纳,获得10
15秒前
所所应助静静子采纳,获得10
16秒前
所所应助jy采纳,获得10
16秒前
hkxfg完成签到,获得积分10
16秒前
duo完成签到,获得积分10
17秒前
18秒前
spurs17发布了新的文献求助10
18秒前
18秒前
善学以致用应助BaekHyun采纳,获得10
18秒前
19秒前
19秒前
nanhe698完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808