Multi-task Learning Based Ocular Disease Discrimination and FAZ Segmentation Utilizing OCTA Images

计算机科学 人工智能 任务(项目管理) 分割 模式识别(心理学) 计算机视觉 图像分割 工程类 系统工程
作者
Zhonghua Wang,Li Lin,Jiewei Wu,Xiaoying Tang
标识
DOI:10.1109/embc46164.2021.9631043
摘要

In this paper, we proposed and validated a multi-task based deep learning method for simultaneously segmenting the foveal avascular zone (FAZ) and classifying three ocular disease related states (normal, diabetic, and myopia) utilizing optical coherence tomography angiography (OCTA) images. The essential motivation of this work is that reliable predictions on disease states may be made based on features extracted from a segmentation network, by sharing a same encoder between the classification network and the segmentation network. In this study, a cotraining network structure was designed for simultaneous ocular disease discrimination and FAZ segmentation. Specifically, we made use of a classification head following a segmentation network's encoder, so that the classification branch used the feature information extracted in the segmentation branch to improve the classification results. The performance of our proposed network structure has been tested and validated on the FAZID dataset, with the best Dice and Jaccard being 0.9031±0.0772 and 0.8302 ±0.0990 for FAZ segmentation, and the best Accuracy and Kappa being 0.7533 and 0.6282 for classifying three ocular disease related states.Clinical Relevance- This work provides a useful tool for segmenting FAZ and discriminating three ocular disease related states utilizing OCTA images, which has a great clinical potential in ocular disease screening and biomarker delivering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷元风完成签到,获得积分10
1秒前
LGH发布了新的文献求助200
2秒前
TAO发布了新的文献求助10
3秒前
Obliviate完成签到,获得积分10
3秒前
4秒前
wangqiuyun发布了新的文献求助20
4秒前
白桦林泪发布了新的文献求助10
5秒前
joker完成签到 ,获得积分10
6秒前
JJ完成签到,获得积分10
7秒前
8秒前
nnnn发布了新的文献求助10
8秒前
ShellyHan完成签到,获得积分10
9秒前
Jean_Zhao完成签到,获得积分10
9秒前
Hello应助高明采纳,获得10
10秒前
干羞花完成签到,获得积分10
11秒前
zwt13104完成签到,获得积分10
12秒前
nnnn完成签到,获得积分10
15秒前
ShellyHan发布了新的文献求助30
15秒前
我是老大应助js110采纳,获得30
15秒前
aqua_xin完成签到,获得积分0
16秒前
16秒前
阿O发布了新的文献求助20
17秒前
JJ完成签到,获得积分10
17秒前
赘婿应助yym采纳,获得10
18秒前
19秒前
柴柴发布了新的文献求助10
22秒前
研友_ngKdbn发布了新的文献求助30
24秒前
25秒前
哦哦哦发布了新的文献求助10
25秒前
26秒前
lv发布了新的文献求助10
28秒前
28秒前
28秒前
鬲木发布了新的文献求助10
31秒前
32秒前
成熟稳重痴情完成签到,获得积分10
32秒前
123关注了科研通微信公众号
32秒前
lily发布了新的文献求助10
33秒前
33秒前
一叶完成签到 ,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993