Multi-task Learning Based Ocular Disease Discrimination and FAZ Segmentation Utilizing OCTA Images

计算机科学 人工智能 任务(项目管理) 分割 模式识别(心理学) 计算机视觉 图像分割 工程类 系统工程
作者
Zhonghua Wang,Li Lin,Jiewei Wu,Xiaoying Tang
标识
DOI:10.1109/embc46164.2021.9631043
摘要

In this paper, we proposed and validated a multi-task based deep learning method for simultaneously segmenting the foveal avascular zone (FAZ) and classifying three ocular disease related states (normal, diabetic, and myopia) utilizing optical coherence tomography angiography (OCTA) images. The essential motivation of this work is that reliable predictions on disease states may be made based on features extracted from a segmentation network, by sharing a same encoder between the classification network and the segmentation network. In this study, a cotraining network structure was designed for simultaneous ocular disease discrimination and FAZ segmentation. Specifically, we made use of a classification head following a segmentation network's encoder, so that the classification branch used the feature information extracted in the segmentation branch to improve the classification results. The performance of our proposed network structure has been tested and validated on the FAZID dataset, with the best Dice and Jaccard being 0.9031±0.0772 and 0.8302 ±0.0990 for FAZ segmentation, and the best Accuracy and Kappa being 0.7533 and 0.6282 for classifying three ocular disease related states.Clinical Relevance— This work provides a useful tool for segmenting FAZ and discriminating three ocular disease related states utilizing OCTA images, which has a great clinical potential in ocular disease screening and biomarker delivering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吉祥应助xiaoyanyan采纳,获得30
刚刚
1秒前
光先生发布了新的文献求助10
1秒前
菜菜子完成签到,获得积分20
4秒前
小学生完成签到,获得积分10
5秒前
5秒前
Jimmy完成签到,获得积分10
5秒前
无辜的姒发布了新的文献求助10
6秒前
7秒前
7秒前
袁妞妞发布了新的文献求助10
8秒前
8秒前
liang发布了新的文献求助10
9秒前
菜菜子发布了新的文献求助10
10秒前
lqq完成签到 ,获得积分10
12秒前
小二郎应助沉默烨霖采纳,获得10
12秒前
甜甜丑发布了新的文献求助10
13秒前
13秒前
15秒前
17秒前
烟花应助月亮夏的夏采纳,获得10
17秒前
17秒前
oceanao应助sedrakyan采纳,获得10
19秒前
20秒前
Zz发布了新的文献求助10
20秒前
苯环完成签到 ,获得积分10
20秒前
20秒前
20秒前
田様应助nonoNOSHEEP采纳,获得10
20秒前
Mossambicus完成签到,获得积分20
21秒前
袁妞妞发布了新的文献求助10
22秒前
紫藤发布了新的文献求助10
22秒前
22秒前
甜甜丑完成签到,获得积分10
23秒前
乐乐应助无辜的姒采纳,获得10
23秒前
23秒前
容荣发布了新的文献求助20
24秒前
1111发布了新的文献求助10
24秒前
雪山飞龙发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112