Multi-task Learning Based Ocular Disease Discrimination and FAZ Segmentation Utilizing OCTA Images

计算机科学 人工智能 任务(项目管理) 分割 模式识别(心理学) 计算机视觉 图像分割 工程类 系统工程
作者
Zhonghua Wang,Li Lin,Jiewei Wu,Xiaoying Tang
标识
DOI:10.1109/embc46164.2021.9631043
摘要

In this paper, we proposed and validated a multi-task based deep learning method for simultaneously segmenting the foveal avascular zone (FAZ) and classifying three ocular disease related states (normal, diabetic, and myopia) utilizing optical coherence tomography angiography (OCTA) images. The essential motivation of this work is that reliable predictions on disease states may be made based on features extracted from a segmentation network, by sharing a same encoder between the classification network and the segmentation network. In this study, a cotraining network structure was designed for simultaneous ocular disease discrimination and FAZ segmentation. Specifically, we made use of a classification head following a segmentation network's encoder, so that the classification branch used the feature information extracted in the segmentation branch to improve the classification results. The performance of our proposed network structure has been tested and validated on the FAZID dataset, with the best Dice and Jaccard being 0.9031±0.0772 and 0.8302 ±0.0990 for FAZ segmentation, and the best Accuracy and Kappa being 0.7533 and 0.6282 for classifying three ocular disease related states.Clinical Relevance- This work provides a useful tool for segmenting FAZ and discriminating three ocular disease related states utilizing OCTA images, which has a great clinical potential in ocular disease screening and biomarker delivering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
英勇的严青完成签到,获得积分10
2秒前
3秒前
云止完成签到 ,获得积分10
5秒前
研友_Zb1rln发布了新的文献求助10
6秒前
可可西里发布了新的文献求助80
8秒前
fanxiangli完成签到,获得积分20
9秒前
12秒前
隐形曼青应助Painkiller_采纳,获得10
13秒前
肥猫完成签到,获得积分10
15秒前
16秒前
此时此刻完成签到,获得积分10
17秒前
mary完成签到,获得积分10
18秒前
情怀应助凯撒采纳,获得10
19秒前
小蘑菇应助6and1采纳,获得30
20秒前
不二完成签到 ,获得积分10
21秒前
21秒前
小曾完成签到,获得积分10
22秒前
研友_VZG7GZ应助归海亦云采纳,获得10
23秒前
23秒前
23秒前
6666发布了新的文献求助10
26秒前
龙龙冲完成签到,获得积分20
26秒前
26秒前
27秒前
mary发布了新的文献求助10
28秒前
活力惜海发布了新的文献求助10
30秒前
凯撒发布了新的文献求助10
31秒前
33秒前
英俊的铭应助Painkiller_采纳,获得10
34秒前
JuntaoLi发布了新的文献求助10
35秒前
大模型应助fanxiangli采纳,获得10
36秒前
呼延子默发布了新的文献求助10
40秒前
112发布了新的文献求助10
40秒前
顾矜应助灶鲜森采纳,获得10
41秒前
离言完成签到,获得积分10
41秒前
42秒前
44秒前
rubbishbaby发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400