Identification of Neuropathic Pain Severity based on Linear and Non-Linear EEG Features

脑电图 神经病理性疼痛 鉴定(生物学) 计算机科学 医学 语音识别 麻醉 精神科 植物 生物
作者
Daniela M. Zolezzi,Luz María Alonso-Valerdi,Norberto E. Naal-Ruiz,David I. Ibarra-Zárate
标识
DOI:10.1109/embc46164.2021.9630101
摘要

The lack of an integral characterization of chronic neuropathic pain (NP) has led to pharmacotherapy mismanagement and has hindered advances in clinical trials. In this study, we attempted to identify chronic NP by fusing psychometric (based on the Brief Inventory of Pain - BIP), and both linear and non-linear electroencephalographic (EEG) features. For this purpose, 35 chronic NP patients were recruited voluntarily. All the volunteers answered the BIP; and additionally, 22 EEG channels positioned in accordance with the 10/20 international system were registered for 10 minutes at resting state: 5 minutes with eyes open and 5 minutes with eyes closed. EEG Signals were sampled at 250 Hz within a bandwidth between 0.1 and 100 Hz. As linear features, absolute band power was obtained per clinical frequency band: delta (0.1~4 Hz), theta (4~8 Hz), alpha (8~12 Hz), beta (12~30 Hz) and gamma (30~100 Hz); considering five regions: prefrontal, frontal, central, parietal and occipital. As non-linear features, approximate entropy was calculated per channel and per clinical frequency band with addition of the broadband (0.1~100 Hz). Resulting feature vectors were grouped in line with the BIP outcome. Three groups were considered: low, moderate, and high pain. Finally, BIP-EEG patterns were classified in those three classes, achieving 96% accuracy. This result improves a previous work of a SVM classifier that used exclusively linear EEG features and showed an accuracy between 87% and 90% per class to predict central NP after spinal cord injury.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猫爬楼梯完成签到 ,获得积分10
7秒前
李神奇应助chai采纳,获得10
12秒前
JamesPei应助成成采纳,获得10
12秒前
Liu完成签到 ,获得积分10
13秒前
14秒前
加油呀完成签到,获得积分10
14秒前
烟花应助孤独的紫真采纳,获得10
15秒前
Gauss应助流沙采纳,获得100
16秒前
虚幻山晴完成签到,获得积分20
16秒前
17秒前
lllhw发布了新的文献求助10
17秒前
李爱国应助yiheqian采纳,获得10
18秒前
共享精神应助雪白小猫咪采纳,获得10
21秒前
成成发布了新的文献求助10
23秒前
23秒前
豆米米完成签到,获得积分10
24秒前
28秒前
oyjn发布了新的文献求助10
30秒前
帅子完成签到,获得积分10
32秒前
科研通AI2S应助儒雅的雁山采纳,获得10
33秒前
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
情怀应助科研通管家采纳,获得10
33秒前
李爱国应助科研通管家采纳,获得10
33秒前
33秒前
充电宝应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
yiheqian给yiheqian的求助进行了留言
34秒前
大模型应助怡然的天思采纳,获得10
34秒前
lllhw完成签到,获得积分10
37秒前
38秒前
42秒前
42秒前
李浩然完成签到,获得积分10
47秒前
东方诩完成签到,获得积分10
51秒前
WLWLW应助干净盼波采纳,获得10
56秒前
1分钟前
激昂的海蓝完成签到,获得积分10
1分钟前
风趣的茹嫣完成签到 ,获得积分10
1分钟前
射天狼发布了新的文献求助10
1分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3086043
求助须知:如何正确求助?哪些是违规求助? 2738975
关于积分的说明 7552540
捐赠科研通 2388747
什么是DOI,文献DOI怎么找? 1266670
科研通“疑难数据库(出版商)”最低求助积分说明 613547
版权声明 598591